199 resultados para infrared and Raman spectra
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
Raman spectra of the uranyl containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2•20H2O, are presented and compared with the mineral’s infrared spectra. Bands connected with (UO2)2+, (PO4)3- , (SO4)2-, (OH)- and H2O stretching and bending vibrations, are assigned. Approximate U-O bond lengths in uranyl, (UO2)2+, and O-H...O hydrogen bond lengths are calculated from the wavenumbers of the U-O stretching vibrations and (OH)- and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.
Resumo:
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)•2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H...O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.
Resumo:
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.
Resumo:
Infrared and infrared emission spectroscopy were used to analyze the difference in structure and thermal behavior of two Chinese palygorskites. The position of the main bands identified in the infrared spectra of the palygorskites studied is similar for these two Chinese samples, but there are some differences in their intensity, which is significant. This discrepancy is attributed to various geological environments in different regions and the existence of impurities. The infrared emission spectra clearly show the structural changes and dehydroxylation of the palygorskites when the temperature is raised. The dehydration of the palygorskites is followed by the loss of intensity of the OH stretching vibration bands in the region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3700 and 3550 cm-1. Dehydration of pure palygorskite was completed by 600 °C. Partial loss of coordinated water was observed at 400 °C. Infrared emission spectroscopy is an effective method to determine the stability of the mineral.
Resumo:
The single crystal Raman spectra of natural mineral finnemanite Pb5(AsO3)3Cl from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a hexagonal mineral belonging to the ortho arsenite group, where the [AsO3]3- ion is isolated. The spectra of finnemanite are characterized by a strong band at 734 cm-1 overlying a shoulder at 726 cm-1, and broad overlapping bands in the lower wavenumber with the strongest band positioned at 174 cm-1. Band assignments were made based on band symmetry, experimental band positions from literature and DFT calculated Raman spectrum, and spectral comparison with other ortho arsenite minerals reinerite, cafarsite, and nealite and synthetic lead arsenite compounds Pb2(AsO2)3Cl, Pb2As2O5, and PbAs2O4 . The band at 734 cm-1 was assigned to υ1(AsO3), bands at 726 and 640 cm-1 assigned to υ3, 372 and 357 cm-1 to υ2, and 244, 239 and 207 cm-1 to υ4. The single crystal spectra of finnemanite showed good mode separation, allowing bands to be assigned a symmetry species of Ag, E1g, or E2g.
Resumo:
The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.
Resumo:
Nekoite Ca3Si6O15•7H2O and okenite Ca10Si18O46•18H2O are both hydrated calcium silicates found respectively in contact metamorphosed limestone and in association with zeolites from the alteration of basalts. The minerals form two-Dimensional infinite sheets with other than six-membered rings with 3-, 4-, or 5-membered rings and 8-membered rings. The two minerals have been characterised by Raman, near-infrared and infrared spectroscopy. The Raman spectrum of nekoite is characterised by two sharp peaks at 1061 and 1092 cm-1 with bands of lesser intensity at 974, 994, 1023 and 1132 cm-1. The Raman spectrum of okenite shows an intense single Raman band at 1090 cm-1 with a shoulder band at 1075 cm-1.These bands are assigned to the SiO stretching vibrations of Si2O5 units. Raman water stretching bands of nekoite are observed at 3071, 3380, 3502 and 3567 cm-1. Raman spectrum of okenite shows water stretching bands at 3029, 3284, 3417, 3531 and 3607 cm-1. NIR spectra of the two minerals are subtly different inferring water with different hydrogen bond strengths. By using a Libowitzky empirical formula, hydrogen bond distances based upon these OH stretching vibrations. Two types of hydrogen bonds are distinguished: strong hydrogen bonds associated with structural water and weaker hydrogen bonds assigned to space filling water molecules.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Resumo:
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.