265 resultados para free convection
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.
Resumo:
Unsteady numerical simulation of Rayleigh Benard convection heat transfer from a 2D channel is performed. The oscillatory behavior is attributed to recirculation of ascending and descending flows towards the core of the channel producing organized rolled motions. Variation of the parameters such as Reynolds number, channel outlet flow area and inclination of the channel are considered. Increasing Reynolds number (for a fixed Rayleigh number), delays the generation of vortices. The reduction in the outflow area leads to the later and the less vortex generation. As the time progresses, more vortices are generated, but the reinforced mean velocity does not let the eddies to enter the core of the channel. Therefore, they attach to the wall and reduce the heat transfer area. The inclination of the channel (both positive and negative) induces the generated vortices to get closer to each other and make an enlarged vortex.
Resumo:
Purpose - This paper seeks to understand the impact of financial cost on customer value in health prevention services by comparing free government services with private fee-charging providers. This is important as there is a common belief that a free health service is of lower quality and thus lower value than a paid service. However there is no evidence to verify this notion. Design / Methodology / Approach - A large-scale online survey was administered nationwide to Australian women. The respondents were asked about the functional and emotional value derived from their service experiences. Findings - Structural equation modelling (SEM) revealed non significant relationships between fee/free services and functional and emotional value (FV/EV). The non-significant relationship with FV is contrary to the theory of price quality relationship in services. This could be attributed to consumer perceptions that the technical quality of health professionals is comparable across free and paid services. The non-significant relationship with EV could be explained by the indicators used to reflect EV. These indicators were reflective of breast screening behaviour, not breast screening services. Subsequently, it may be posited that the act of having a breast screen is sufficient for consumers to derive emotional value, regardless of the financial cost. Originality / Value - This research fills an important gap in the literature by investigating the impact of financial cost on a service that consumers use proactively(prevention), rather than reactively (treatment). Insights are provided into the impact of cost on customer value in preventive health services, which are valuable to social marketing academics, health practitioners, and governments
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
A Jacobian-free variable-stepsize method is developed for the numerical integration of the large, stiff systems of differential equations encountered when simulating transport in heterogeneous porous media. Our method utilises the exponential Rosenbrock-Euler method, which is explicit in nature and requires a matrix-vector product involving the exponential of the Jacobian matrix at each step of the integration process. These products can be approximated using Krylov subspace methods, which permit a large integration stepsize to be utilised without having to precondition the iterations. This means that our method is truly "Jacobian-free" - the Jacobian need never be formed or factored during the simulation. We assess the performance of the new algorithm for simulating the drying of softwood. Numerical experiments conducted for both low and high temperature drying demonstrates that the new approach outperforms (in terms of accuracy and efficiency) existing simulation codes that utilise the backward Euler method via a preconditioned Newton-Krylov strategy.
Resumo:
Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.
Resumo:
Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.
Resumo:
Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration projects to fail. Achieving successful rehabilitation in an ASS affected area requires an understanding of the geochemical conditions that influence the establishment and growth of mangrove seedlings. This study evaluated the effect of tidal inundation on geochemical conditions on sub layer to better understand their impacts on the density, establishment, and growth of mangrove seedlings. This study also examined the geochemical conditions under which mangrove seedlings can establish naturally, and/or be replanted in abandoned aquaculture ponds. The study area was in an area of abandoned aquaculture ponds situated in the Mare District, adjacent to Bone Bay, South Sulawesi, Indonesia.The pH, pHfox, redox potential, organic content, water soluble sulfate, SKCl, SPOS, and grain size of the soil from the sediment core at + 10 - 15 cm depth near roots were measured using. Pyrite analysis were conducted for the top and sub sediments. The density, establishment, and the relative root growth of Rhizophoraceae were also determined. Free tidal inundation at abandoned pond sites improved the sediment quality. The high density, establishment, and growth of mangrove seedlings were characterized by freely drained areas with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. Higher density and growth also correlated to reduced environments. Sulfur species did not influence the density, establishment, and growth of the seedlings directly. The supply of propagules from the mangrove stands, or access from good waterways were also important for seedlings to establish naturally.
Resumo:
Here mixed convection boundary layer flow of a viscous fluid along a heated vertical semi-infinite plate is investigated in a non-absorbing medium. The relationship between convection and thermal radiation is established via boundary condition of second kind on the thermally radiating vertical surface. The governing boundary layer equations are transformed into dimensionless parabolic partial differential equations with the help of appropriate transformations and the resultant system is solved numerically by applying straightforward finite difference method along with Gaussian elimination technique. It is worthy to note that Prandlt number, Pr, is taken to be small (<< 1) which is appropriate for liquid metals. Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, namely, the modified Richardson number (or mixed convection parameter), Ri*, and surface radiation parameter, R, in terms of local skin friction and local Nusselt number coefficients.
Resumo:
An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different values of volume fraction in the range 0 0.2 , Rayleigh number in the range 9 1 Ra 10 and the nano particles with different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing trend of heat transfer was observed due to increase in the volume fraction of nanofluids.
Resumo:
Separately, actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC) have been associated with cutaneous human papillomavirus (HPV) infections. To further explore the association between HPV infection and SCC development, we determined markers of cutaneous HPV infection within a single population in persons with precursor lesions (AK), cancerous lesions (SCC), and without. Serum and plucked eyebrow hairs were collected from 57 tumor-free controls, 126 AK, and 64 SCC cases. Presence of HPV L1 and E6 seroreactivity and viral DNA were determined for HPV types 5, 8, 15, 16, 20, 24, and 38. Significant positive associations with increasing severity of the lesions (controls, AK, and SCC, respectively) were observed for overall HPV L1 seropositivity (13%, 26%, and 37%) and for HPV8 (4%, 17%, and 30%). In parallel, the proportion of L1 seropositive individuals against multiple HPV types increased from 14% to 39% and 45%. The overall E6 seroreactivity, however, tended to decline with AK and SCC, especially for HPV8 (21%, 11%, and 2%). HPV DNA positivity was most prevalent in the AK cases (54%) compared with the SCC cases (44%) and the tumor-free controls (40%). Among all participants, there was a positive trend between overall HPV DNA positivity and L1 seropositivity, but not E6 seropositivity. Taken together, our data suggest that cutaneous HPV infections accompanied by detectable HPV DNA in eyebrow hairs and HPV L1 seropositivity, but not E6 seropositivity, are associated with an increased risk of AK and SCC.
Resumo:
Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.