248 resultados para ferroelectrics, domains, domain walls
Resumo:
There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.
Resumo:
Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.
Resumo:
Unsteady natural convection due to differentially heating of the sinusoidal corrugated side walls of a modified square enclosure has been numerically investigated. The fluid inside the enclosure is air, initially as quiescent. The flat top and bottom surfaces are considered as adiabatic. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results are obtained for the Rayleigh number, Ra ranging from 1e+05 to 1e+08 for different corrugation amplitude and frequency with constant physical properties for the fluid medium considered. The streamlines, isotherms and average Nusselt numbers are presented to observe the effect of sudden heating and its consequent transient behavior on fluid flow and heat transfer characteristics for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the aforementioned parameters.
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly using face shell bedded hollow concrete blocks, is an economical structural system and is popularly used in the cyclonic areas; its out-of-plane response to lateral loading is well understood, unfortunately its inplane shear behaviour is less well understood as to the effect of partial gouting in intervening the load paths within the wall. For rational analysis of the wall clarification is sought as to whether the wall acts as a composite of unreinforced panels and reinforced cores or as a continuum of masonry embedded with reinforced at wider spacing. This paper reports the results of four full scale walls tested under inplane cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteric curves as well as local responses of some critical zones of the shear walls are presented.
Resumo:
Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly with the use of face shell bedded hollow concrete blocks, is adopted extensively in the cyclonic areas due to its economy. Its out-of-plane response to lateral pressure loading is well definied; however its in-plane shear behaviour is less well understood, in particular it is unclear how the grouted reinforced cores affect the load paths within the wall. For the rational design of the walls, clarification is sought as to whether the wall acts as a composite of unreinforced panels surrounded by the reinforced cores or simply as a continuum embedded with reinforcement at wider spacing. This paper reports four full scale walls tested under in-place cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteretic curves as well as the local responses of some critical zones of the shear walls are presented. It is shown that the aspect ratio of the unreinforced masonry panels surrounded by the reinforced grouted cores within the shear walls have profound effect in ascertaining the behaviour of the shear walls.
Resumo:
This thesis is about the Australian domain name system and, in particular, the principles governing the registration of domain names in the '.au' country code domain space. It examines the different types of registration systems adopted in country code domain spaces and categorises them according to the extent to which they impose restrictions on registration, ranging from restrictive to unrestrictive. A comparative analysis is made of the restrictive registration system in Australia and the United Kingdom‘s unrestrictive system.
Resumo:
A full architectural education typically involves five years of formal education and two years of practice experience under the supervision of a registered architect. In many architecture courses some of this period of internship can be taken either as a ‘year out’ between years of study, or during enrolment as credited study; work place learning or work integrated learning. This period of learning can be characterised as an internship in which the student, as an adult learner, is supervised by their employer. This is a highly authentic learning environment, but one in which the learner is both student and employee, and the architect is both teacher and employer; at times conflicting roles. While the educational advantages of such authentic practice experience are well recognised, there are also concerns about the quality and variability of such experiences. This paper reviews the current state of practice, with respect to architectural internships, and analyses such practice using Laurillard’s ‘conversational framework’ (2002). The framework highlights the interactions and affordances between teacher and student in the form of concepts, adaptations, reflections, actions and feedback. A review of common practice in architectural work place learning, internships in other fields of education, and focused research at the author’s own university, are discussed, then analysed for ‘affordances’ of learning. Such analysis shows both the potential of work place learning to offer a unique environment for learning, and the need to organise and construct such experiences in ways that facilitates learning.
Resumo:
Recently an innovative composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of light gauge cold-formed steel frame walls. In this research, finite-element thermal models of both the traditional light gauge cold-formed steel frame wall panels with cavity insulation and the new light gauge cold-formed steel frame composite wall panels were developed to simulate their thermal behaviour under standard and realistic fire conditions. Suitable apparent thermal properties of gypsum plasterboard, insulation materials and steel were proposed and used. The developed models were then validated by comparing their results with available fire test results. This article presents the details of the developed finite-element models of small-scale non-load-bearing light gauge cold-formed steel frame wall panels and the results of the thermal analysis. It has been shown that accurate finite-element models can be used to simulate the thermal behaviour of small-scale light gauge cold-formed steel frame walls with varying configurations of insulations and plasterboards. The numerical results show that the use of cavity insulation was detrimental to the fire rating of light gauge cold-formed steel frame walls, while the use of external insulation offered superior thermal protection to them. The effects of real fire conditions are also presented.
Resumo:
The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
The three studies in this thesis focus on happiness and age and seek to contribute to our understanding of happiness change over the lifetime. The first study contributes by offering an explanation for what was evolving to a ‘stylised fact’ in the economics literature, the U-shape of happiness in age. No U-shape is evident if one makes a visual inspection of the age happiness relationship in the German socio-economic panel data, and, it seems counter-intuitive that we just have to wait until we get old to be happy. Eliminating the very young, the very old, and the first timers from the analysis did not explain away regression results supporting the U-shape of happiness in age, but fixed effect analysis did. Analysis revealed found that reverse causality arising from time-invariant individual traits explained the U-shape of happiness in age in the German population, and the results were robust across six econometric methods. Robustness was added to the German fixed effect finding by replicating it with the Australian and the British socio-economic panel data sets. During analysis of the German data an unexpected finding emerged, an exceedingly large negative linear effect of age on happiness in fixed-effect regressions. There is a large self-reported happiness decline by those who remain in the German panel. A similar decline over time was not evident in the Australian or the British data. After testing away age, time and cohort effects, a time-in-panel effect was found. Germans who remain in the panel for longer progressively report lower levels of happiness. Because time-in-panel effects have not been included in happiness regression specifications, our estimates may be biased; perhaps some economics of the happiness studies, that used German panel data, need revisiting. The second study builds upon the fixed-effect finding of the first study and extends our view of lifetime happiness to a cohort little visited by economists, children. Initial analysis extends our view of lifetime happiness beyond adulthood and revealed a happiness decline in adolescent (15 to 23 year-old) Australians that is twice the size of the happiness decline we see in older Australians (75 to 86 yearolds), who we expect to be unhappy due to declining income, failing health and the onset of death. To resolve a difference of opinion in the literature as to whether childhood happiness decreases, increases, or remains flat in age; survey instruments and an Internet-based survey were developed and used to collect data from four hundred 9 to 14 year-old Australian children. Applying the data to a Model of Childhood Happiness revealed that the natural environment life-satisfaction domain factor did not have a significant effect on childhood happiness. However, the children’s school environment and interactions with friends life-satisfaction domain factors explained over half a steep decline in childhood happiness that is three times larger than what we see in older Australians. Adding personality to the model revealed what we expect to see with adults, extraverted children are happier, but unexpectedly, so are conscientious children. With the steep decline in the happiness of young Australians revealed and explanations offered, the third study builds on the time-invariant individual trait finding from the first study by applying the Australian panel data to an Aggregate Model of Average Happiness over the lifetime. The model’s independent variable is the stress that arises from the interaction between personality and the life event shocks that affect individuals and peers throughout their lives. Interestingly, a graphic depiction of the stress in age relationship reveals an inverse U-shape; an inverse U-shape that looks like the opposite of the U-shape of happiness in age we saw in the first study. The stress arising from life event shocks is found to explain much of the change in average happiness over a lifetime. With the policy recommendations of economists potentially invoking unexpected changes in our lives, the ensuing stress and resulting (un)happiness warrant consideration before economists make policy recommendations.
Resumo:
Purpose. To investigate whether diurnal variation occurs in retinal thickness measures derived from spectral domain optical coherence tomography (SD-OCT). Methods. Twelve healthy adult subjects had retinal thickness measured with SD-OCT every 2 h over a 10 h period. At each measurement session, three average B-scan images were derived from a series of multiple B-scans (each from a 5 mm horizontal raster scan along the fovea, containing 1500 A-scans/B-scan) and analyzed to determine the thickness of the total retina, as well as the thickness of the outer retinal layers. Average thickness values were calculated at the foveal center, at the 0.5 mm diameter foveal region, and for the temporal parafovea (1.5 mm from foveal center) and nasal parafovea (1.5 mm from foveal center). Results. Total retinal thickness did not exhibit significant diurnal variation in any of the considered retinal regions (p > 0.05). Evidence of significant diurnal variation was found in the thickness of the outer retinal layers (p < 0.05), with the most prominent changes observed in the photoreceptor layers at the foveal center. The photoreceptor inner and outer segment layer thickness exhibited mean amplitude (peak to trough) of daily change of 7 ± 3 μm at the foveal center. The peak in thickness was typically observed at the third measurement session (mean measurement time, 13:06). Conclusions. The total retinal thickness measured with SD-OCT does not exhibit evidence of significant variation over the course of the day. However, small but significant diurnal variation occurs in the thickness of the foveal outer retinal layers.
Resumo:
Creativity plays an increasingly important role in our personal, social, educational, and community lives. For adolescents, creativity can enable self-expression, be a means of pushing boundaries, and assist learning, achievement, and completion of everyday tasks. Moreover, adolescents who demonstrate creativity can potentially enhance their capacity to face unknown future challenges, address mounting social and ecological issues in our global society, and improve their career opportunities and contribution to the economy. For these reasons, creativity is an essential capacity for young people in their present and future, and is highlighted as a priority in current educational policy nationally and internationally. Despite growing recognition of creativity’s importance and attention to creativity in research, the creative experience from the perspectives of the creators themselves and the creativity of adolescents are neglected fields of study. Hence, this research investigated adolescents’ self-reported experiences of creativity to improve understandings of their creative processes and manifestations, and how these can be supported or inhibited. Although some aspects of creativity have been extensively researched, there were no comprehensive, multidisciplinary theoretical frameworks of adolescent creativity to provide a foundation for this study. Therefore, a grounded theory methodology was adopted for the purpose of constructing a new theory to describe and explain adolescents’ creativity in a range of domains. The study’s constructivist-interpretivist perspective viewed the data and findings as interpretations of adolescents’ creative experiences, co-constructed by the participants and the researcher. The research was conducted in two academically selective high schools in Australia: one arts school, and one science, mathematics, and technology school. Twenty adolescent participants (10 from each school) were selected using theoretical sampling. Data were collected via focus groups, individual interviews, an online discussion forum, and email communications. Grounded theory methods informed a process of concurrent data collection and analysis; each iteration of analysis informed subsequent data collection. Findings portray creativity as it was perceived and experienced by participants, presented in a Grounded Theory of Adolescent Creativity. The Grounded Theory of Adolescent Creativity comprises a core category, Perceiving and Pursuing Novelty: Not the Norm, which linked all findings in the study. This core category explains how creativity involved adolescents perceiving stimuli and experiences differently, approaching tasks or life unconventionally, and pursuing novel ideas to create outcomes that are not the norm when compared with outcomes by peers. Elaboration of the core category is provided by the major categories of findings. That is, adolescent creativity entailed utilising a network of Sub-Processes of Creativity, using strategies for Managing Constraints and Challenges, and drawing on different Approaches to Creativity – adaptation, transfer, synthesis, and genesis – to apply the sub-processes and produce creative outcomes. Potentially, there were Effects of Creativity on Creators and Audiences, depending on the adolescent and the task. Three Types of Creativity were identified as the manifestations of the creative process: creative personal expression, creative boundary pushing, and creative task achievement. Interactions among adolescents’ dispositions and environments were influential in their creativity. Patterns and variations of these interactions revealed a framework of four Contexts for Creativity that offered different levels of support for creativity: high creative disposition–supportive environment; high creative disposition–inhibiting environment; low creative disposition–supportive environment; and low creative disposition–inhibiting environment. These contexts represent dimensional ranges of how dispositions and environments supported or inhibited creativity, and reveal that the optimal context for creativity differed depending on the adolescent, task, domain, and environment. This study makes four main contributions, which have methodological and theoretical implications for researchers, as well as practical implications for adolescents, parents, teachers, policy and curriculum developers, and other interested stakeholders who aim to foster the creativity of adolescents. First, this study contributes methodologically through its constructivist-interpretivist grounded theory methodology combining the grounded theory approaches of Corbin and Strauss (2008) and Charmaz (2006). Innovative data collection was also demonstrated through integration of data from online and face-to-face interactions with adolescents, within the grounded theory design. These methodological contributions have broad applicability to researchers examining complex constructs and processes, and with populations who integrate multimedia as a natural form of communication. Second, applicable to creativity in diverse domains, the Grounded Theory of Adolescent Creativity supports a hybrid view of creativity as both domain-general and domain-specific. A third major contribution was identification of a new form of creativity, educational creativity (ed-c), which categorises creativity for learning or achievement within the constraints of formal educational contexts. These theoretical contributions inform further research about creativity in different domains or multidisciplinary areas, and with populations engaged in formal education. However, the key contribution of this research is that it presents an original Theory and Model of Adolescent Creativity to explain the complex, multifaceted phenomenon of adolescents’ creative experiences.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.