333 resultados para feature based cost
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.
Resumo:
This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.
Resumo:
-
Resumo:
This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.
Resumo:
Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.
Resumo:
This paper describes a novel probabilistic approach to incorporating odometric information into appearance-based SLAM systems, without performing metric map construction or calculating relative feature geometry. The proposed system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), represents location as a probability distribution along a trajectory, and represents appearance continuously over the trajectory rather than at discrete locations. The distribution is evaluated using a Rao-Blackwellised particle filter, which weights particles based on local appearance and odometric similarity and explicitly models both the likelihood of revisiting previous locations and visiting new locations. A modified resampling scheme counters particle deprivation and allows loop closure updates to be performed in constant time regardless of map size. We compare the performance of CAT-SLAM to FAB-MAP (an appearance-only SLAM algorithm) in an outdoor environment, demonstrating a threefold increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
Cu2ZnSnS4 (CZTS) is considered to be one of the most promising light absorbing materials for low cost, high efficiency thin film solar cells. Compared to conventional CuIn(S, Se)2 (CIS) and Cu(InGa)(S,Se)2 (CIGS) as well as CdTe light absorber, CZTS is only composed of earth-abundant non-toxic elements, ensuring the price competitiveness of this kind of solar cell in the future PV market. However, the research in this area is very limited compared to CIS and CIGS. Detailed studies of both the material and the device are rare, which significantly restricts the development in this area. This paper reviews the progress in the research field of CZTS, particularly the methods which were employed to prepare CZTS absorber material.
Resumo:
Road accidents are of great concerns for road and transport departments around world, which cause tremendous loss and dangers for public. Reducing accident rates and crash severity are imperative goals that governments, road and transport authorities, and researchers are aimed to achieve. In Australia, road crash trauma costs the nation A$ 15 billion annually. Five people are killed, and 550 are injured every day. Each fatality costs the taxpayer A$1.7 million. Serious injury cases can cost the taxpayer many times the cost of a fatality. Crashes are in general uncontrolled events and are dependent on a number of interrelated factors such as driver behaviour, traffic conditions, travel speed, road geometry and condition, and vehicle characteristics (e.g. tyre type pressure and condition, and suspension type and condition). Skid resistance is considered one of the most important surface characteristics as it has a direct impact on traffic safety. Attempts have been made worldwide to study the relationship between skid resistance and road crashes. Most of these studies used the statistical regression and correlation methods in analysing the relationships between skid resistance and road crashes. The outcomes from these studies provided mix results and not conclusive. The objective of this paper is to present a probability-based method of an ongoing study in identifying the relationship between skid resistance and road crashes. Historical skid resistance and crash data of a road network located in the tropical east coast of Queensland were analysed using the probability-based method. Analysis methodology and results of the relationships between skid resistance, road characteristics and crashes are presented.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.