178 resultados para enzyme activation
Resumo:
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains ∼60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser473 (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr37/46 (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser1108 (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr389 (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.
Resumo:
This paper investigates how neuronal activation for naming photographs of objects is influenced by the addition of appropriate colour or sound. Behaviourally, both colour and sound are known to facilitate object recognition from visual form. However, previous functional imaging studies have shown inconsistent effects. For example, the addition of appropriate colour has been shown to reduce antero-medial temporal activation whereas the addition of sound has been shown to increase posterior superior temporal activation. Here we compared the effect of adding colour or sound cues in the same experiment. We found that the addition of either the appropriate colour or sound increased activation for naming photographs of objects in bilateral occipital regions and the right anterior fusiform. Moreover, the addition of colour reduced left antero-medial temporal activation but this effect was not observed for the addition of object sound. We propose that activation in bilateral occipital and right fusiform areas precedes the integration of visual form with either its colour or associated sound. In contrast, left antero-medial temporal activation is reduced because object recognition is facilitated after colour and form have been integrated.
Resumo:
Previous studies have found that the lateral posterior fusiform gyri respond more robustly to pictures of animals than pictures of manmade objects and suggested that these regions encode the visual properties characteristic of animals. We suggest that such effects actually reflect processing demands arising when items with similar representations must be finely discriminated. In a positron emission tomography (PET) study of category verification with colored photographs of animals and vehicles, there was robust animal-specific activation in the lateral posterior fusiform gyri when stimuli were categorized at an intermediate level of specificity (e.g., dog or car). However, when the same photographs were categorized at a more specific level (e.g., Labrador or BMW), these regions responded equally strongly to animals and vehicles. We conclude that the lateral posterior fusiform does not encode domain-specific representations of animals or visual properties characteristic of animals. Instead, these regions are strongly activated whenever an item must be discriminated from many close visual or semantic competitors. Apparent category effects arise because, at an intermediate level of specificity, animals have more visual and semantic competitors than do artifacts.
Resumo:
Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.
Resumo:
The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.
Resumo:
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Resumo:
Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAFV600E oncogene, which arises commonly in melanoma. BRAFV600E signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH 2 terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr223, Ser226, Thr447, and Thr451. BRAFV600E-induced FOXO4 phosphorylation resulted in p21cip1-mediated cell senescence independent of p16 ink4a or p27kip1. Importantly, melanocyte-specific activation of BRAFV600E in vivo resulted in the formation of skin nevi expressing Thr223/Ser226-phosphorylated FOXO4 and elevated p21cip1. Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging.
Resumo:
Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.
Resumo:
Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of V600EBRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of V600EBRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition. We also identified several additional genes whose expression changed after 24 h of pathway inhibition and which are likely to be indirect transcriptional targets of the pathway. Several of these were confirmed by demonstrating their expression to be similarly regulated when BRAF was depleted using RNA interference, and by using qRT-PCR in other BRAF mutated melanoma lines. Many of these genes are transcription factors and feedback inhibitors of the ERK pathway and are also regulated by MEK signalling in NRAS mutant cells. This study provides a basis for understanding the molecular processes that are regulated by V600EBRAF/MEK signalling in melanoma cells.