186 resultados para electronic signatures
Resumo:
Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving---a form of self-enforcement---and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic construction using a new type of trapdoor functions with extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum integer.
Resumo:
Electronic Medical Record (EMR) systems are being implemented increasingly worldwide. Saudi Arabia is one of the developing countries that commenced implementing such systems in 1988. Whilst EMR uptake has been low in Saudi Arabia until now, a number of hospitals have implemented EMR systems successfully. This paper analyses available studies (n = 28) in the literature regarding EMR implementation in Saudi Arabia to identify the progress of EMR implementation to date and to identify the facilitators and barriers to implementation.
Resumo:
One-time proxy signatures are one-time signatures for which a primary signer can delegate his or her signing capability to a proxy signer. In this work we propose two one-time proxy signature schemes with different security properties. Unlike other existing one-time proxy signatures that are constructed from public key cryptography, our proposed schemes are based one-way functions without trapdoors and so they inherit the communication and computation efficiency from the traditional one-time signatures. Although from a verifier point of view, signatures generated by the proxy are indistinguishable from those created by the primary signer, a trusted authority can be equipped with an algorithm that allows the authority to settle disputes between the signers. In our constructions, we use a combination of one-time signatures, oblivious transfer protocols and certain combinatorial objects. We characterise these new combinatorial objects and present constructions for them.
Efficient extension of standard Schnorr/RSA signatures into Universal Designated-Verifier Signatures
Resumo:
Universal Designated-Verifier Signature (UDVS) schemes are digital signature schemes with additional functionality which allows any holder of a signature to designate the signature to any desired designated-verifier such that the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. Since UDVS schemes reduce to standard signatures when no verifier designation is performed, it is natural to ask how to extend the classical Schnorr or RSA signature schemes into UDVS schemes, so that the existing key generation and signing implementation infrastructure for these schemes can be used without modification. We show how this can be efficiently achieved, and provide proofs of security for our schemes in the random oracle model.
Resumo:
With the introduction of Check 21 law and the development of FSTC's echeck system, there has been an increasing usage of e-cheque conversions and acceptance among retailers, banks, and consumers. However, the current e-cheque system does not address issues concerning privacy, confidentiality, and traceability. We highlight the issues concerning the current electronic cheque system and provide a solution to overcome those drawbacks.
Resumo:
The highly unusual structural and electronic properties of the α-phase of (Si1-xCx)3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si 1-xCx)3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si 1-xCx)3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1-xCx)3N 4 is found to be closer to that of α-Si3N 4 than of α-C3N4. Plasma-assisted synthesis experiments of CNx and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C-N and Si-N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.
Resumo:
The electronic transport in both intrinsic and acid-treated single-walled carbon nanotube networks containing more than 90% semiconducting nanotubes is investigated using temperature-dependent resistance measurements. The semiconducting behavior observed in the intrinsic network is attributed to the three-dimensional electron hopping mechanism. In contrast, the chemical doping mechanism in the acid-treated network is found to be responsible for the revealed metal-like linear resistivity dependence in a broad temperature range. This effective method to control the electrical conductivity of single-walled carbon nanotube networks is promising for future nanoscale electronics, thermometry, and bolometry. © 2010 American Institute of Physics.
Resumo:
Structural stability, electronic, and optical properties of InN under high pressure are studied using the first-principles calculations. The lattice constants and electronic band structure are found consistent with the available experimental and theoretical values. The pressure of the wurtzite-to-rocksalt structural transition is 13.4 GPa, which is in an excellent agreement with the most recent experimental values. The optical characteristics reproduce the experimental data thus justifying the feasibility of our theoretical predictions of the optical properties of InN at high pressures.
Resumo:
This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.
Resumo:
Motivated by privacy issues associated with dissemination of signed digital certificates, we define a new type of signature scheme called a ‘Universal Designated-Verifier Signature’ (UDVS). A UDVS scheme can function as a standard publicly-verifiable digital signature but has additional functionality which allows any holder of a signature (not necessarily the signer) to designate the signature to any desired designated-verifier (using the verifier’s public key). Given the designated-signature, the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. We propose an efficient deterministic UDVS scheme constructed using any bilinear group-pair. Our UDVS scheme functions as a standard Boneh-Lynn-Shacham (BLS) signature when no verifier-designation is performed, and is therefore compatible with the key-generation, signing and verifying algorithms of the BLS scheme. We prove that our UDVS scheme is secure in the sense of our unforgeability and privacy notions for UDVS schemes, under the Bilinear Diffie-Hellman (BDH) assumption for the underlying group-pair, in the random-oracle model. We also demonstrate a general constructive equivalence between a class of unforgeable and unconditionally-private UDVS schemes having unique signatures (which includes the deterministic UDVS schemes) and a class of ID-Based Encryption (IBE) schemes which contains the Boneh-Franklin IBE scheme but not the Cocks IBE scheme.
Resumo:
Three proof requirements as essential for a sustainable land registration system. These were proof of identity, proof of ownership, and authority to deal. Our attention in this paper is drawn to the latter two requirements and will ask whether the introduction of the Property Exchange of Australia (PEXA), and its underpinning regulatory regime will meet the concerns that we have in relation to proof of ownership and authority to deal. In drawing out some problems with PEXA, we then offer an innovative idea, sourced from the transfer of equities that could serve to generate discussion on how we can ensure the Torrens system of land registration is sustainable for another 160 years.
Resumo:
A combination of laser plasma ablation and strain control in CdO/ZnO heterostructures is used to produce and stabilize a metastable wurtzite CdO nanophase. According to the Raman selection rules, this nanophase is Raman-active whereas the thermodynamically preferred rocksalt phase is inactive. The wurtzite-specific and thickness/strain-dependent Raman fingerprints and phonon modes are identified and can be used for reliable and inexpensive nanophase detection. The wurtzite nanophase formation is also confirmed by x-ray diffractometry. The demonstrated ability of the metastable phase and phonon mode control in CdO/ZnO heterostructures is promising for the development of next-generation light emitting sources and exciton-based laser diodes.
Resumo:
Recent controversy on the quantum dots dephasing mechanisms (between pure and inelastic) is re-examined by isolating the quantum dots from their substrate by using the appropriate limits of the ionization energy theory and the quantum adiabatic theorem. When the phonons in the quantum dots are isolated adiabatically from the phonons in the substrate, the elastic or pure dephasing becomes the dominant mechanism. On the other hand, for the case where the phonons from the substrate are non-adiabatically coupled to the quantum dots, the inelastic dephasing process takes over. This switch-over is due to different elemental composition in quantum dots as compared to its substrate. We also provide unambiguous analysis as to understand why GaAs/AlGaAs quantum dots may only have pure dephasing while InAs/GaAs quantum dots give rise to the inelastic dephasing as the dominant mechanism. It is shown that the elemental composition plays an important role (of both quantum dots and substrate) in evaluating the dephasing mechanisms of quantum dots.
Resumo:
This thesis has developed a new approach to trace virtual protection signals in Electrical substation networks. The main goal of the research was to analyse the contents of the virtual signals transferred, using third party software. In doing so, a comprehensive test was done on a distance protection relay, using non-conventional test equipment.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.