397 resultados para dynamic probabilistic networks
Resumo:
This paper presents a novel algorithm for the gateway placement problem in Backbone Wireless Mesh Networks (BWMNs). Different from existing algorithms, the new algorithm incrementally identifies gateways and assigns mesh routers to identified gateways. The new algorithm can guarantee to find a feasible gateway placement satisfying Quality-of-Service (QoS) constraints, including delay constraint, relay load constraint and gateway capacity constraint. Experimental results show that its performance is as good as that of the best of existing algorithms for the gateway placement problem. But, the new algorithm can be used for BWMNs that do not form one connected component, and it is easy to implement and use.
Resumo:
Read through a focus on the remediation of personal photography in the Flickr photosharing website, in this essay I treat vernacular creativity as a field of cultural practice; one that that does not operate inside the institutions or cultural value systems of high culture or the commercial popular media, and yet draws on and is periodically appropriated by these other systems in dynamic and productive ways. Because of its porosity to commercial culture and art practice, this conceptual model of ‘vernacular creativity’ implies a historicised account of ‘ordinary’ or everyday creative practice that accounts for both continuity and change and avoids creating a nostalgic desire for the recuperation of an authentic folk culture. Moving beyond individual creative practice, the essay concludes by considering the unintended consequences of vernacular creativity practiced in online social networks: in particular, the idea of cultural citizenship.
Resumo:
In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.
Resumo:
This paper presents dynamic hysteresis band height control to reduce the overshoot and undershoot issue on output voltage caused by load change. The converters in this study are Boost and Positive Buck-Boost (PBB) converters. PBB has been controlled to work in a step up conversion and avoid overshoot when load is changed. Simulation and experimental results have been presented to verify the proposed method.
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.
Networks in the shadow of markets and hierarchies : calling the shots in the visual effects industry
Resumo:
The nature and organisation of creative industries and the creative economy has received increased attention in recent academic and policy literatures (Florida 2002; Grabher 2002; Scott 2006a). Constituted as one variant on new economy narratives, creativity, alongside knowledge, has been presented as a key competitive asset, Such industries – ranging from advertising, to film and new media – are seen as not merely expanding their scale and scope, but as leading edge proponents of a more general trend towards new forms of organization and economic coordination (Davis and Scase 2000). The idea of network forms (and the consequent displacement of markets and hierarchies) has been at the heart of attempts to differentiate the field economically and spatially. Across both the discussion of production models and work/employment relations is the assertion of the enhanced importance of trust and non-market relations in coordinating structures and practices. This reflects an influential view in sociological, management, geography and other literatures that social life is ‘intrinsically networked’ (Sunley 2008: 12) and that we can confidently use the term ‘network society’ to describe contemporary structures and practices (Castells 1996). Our paper is sceptical of the conceptual and empirical foundations of such arguments. We draw on a number of theoretical resources, including institutional theory, global value chain analysis and labour process theory (see Smith and McKinlay 2009) to explore how a more realistic and grounded analysis of the nature of and limits to networks can be articulated. Given space constraints, we cannot address all the dimensions of network arguments or evidence. Our focus is on inter and intra-firm relations and draws on research into a particular creative industry – visual effects – that is a relatively new though increasingly important global production network. Through this examination a different model of the creative industries and creative work emerges – one in which market rules and patterns of hierarchical interaction structure the behaviour of economic actors and remain a central focus of analysis. The next section outlines and unpacks in more detail arguments concerning the role and significance of networks, markets and hierarchies in production models and work organisation in creative industries and the ‘creative economy’.
Resumo:
Growing participation is a key challenge for the viability of sustainability initiatives, many of which require enactment at a local community level in order to be effective. This paper undertakes a review of technology assisted carpooling in order to understand the challenge of designing participation and consider how mobile social software and interface design can be brought to bear. It was found that while persuasive technology and social networking approaches have roles to play, critical factors in the design of carpooling are convenience, ease of use and fit with contingent circumstances, all of which require a use-centred approach to designing a technological system and building participation. Moreover, the reach of technology platform-based global approaches may be limited if they do not cater to local needs. An approach that focuses on iteratively designing technology to support and grow mobile social ridesharing networks in particular locales is proposed. The paper contributes an understanding of HCI approaches in the context of other designing participation approaches.
Resumo:
Cognitive-energetical theories of information processing were used to generate predictions regarding the relationship between workload and fatigue within and across consecutive days of work. Repeated measures were taken on board a naval vessel during a non-routine and a routine patrol. Data were analyzed using growth curve modeling. Fatigue demonstrated a non-monotonic relationship within days in both patrols – fatigue was high at midnight, started decreasing until noontime and then increased again. Fatigue increased across days towards the end of the non-routine patrol, but remained stable across days in the routine patrol. The relationship between workload and fatigue changed over consecutive days in the non-routine patrol. At the beginning of the patrol, low workload was associated with fatigue. At the end of the patrol, high workload was associated with fatigue. This relationship could not be tested in the routine patrol, however it demonstrated a non-monotonic relationship between workload and fatigue – low and high workloads were associated with the highest fatigue. These results suggest that the optimal level of workload can change over time and thus have implications for the management of fatigue.
Resumo:
Intelligent software agents are promising in improving the effectiveness of e-marketplaces for e-commerce. Although a large amount of research has been conducted to develop negotiation protocols and mechanisms for e-marketplaces, existing negotiation mechanisms are weak in dealing with complex and dynamic negotiation spaces often found in e-commerce. This paper illustrates a novel knowledge discovery method and a probabilistic negotiation decision making mechanism to improve the performance of negotiation agents. Our preliminary experiments show that the probabilistic negotiation agents empowered by knowledge discovery mechanisms are more effective and efficient than the Pareto optimal negotiation agents in simulated e-marketplaces.
Resumo:
Successful project delivery of construction projects depends on many factors. With regard to the construction of a facility, selecting a competent contractor for the job is paramount. As such, various approaches have been advanced to facilitate tender award decisions. Essentially, this type of decision involves the prediction of a bidderÕs performance based on information available at the tender stage. A neural network based prediction model was developed and presented in this paper. Project data for the study were obtained from the Hong Kong Housing Department. Information from the tender reports was used as input variables and performance records of the successful bidder during construction were used as output variables. It was found that the networks for the prediction of performance scores for Works gave the highest hit rate. In addition, the two most sensitive input variables toward such prediction are ‘‘Difference between Estimate’’ and ‘‘Difference between the next closest bid’’. Both input variables are price related, thus suggesting the importance of tender sufficiency for the assurance of quality production.
Resumo:
This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This research paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place of residents, workers and visitors. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.