190 resultados para computer-based instruction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location based games (LBGs) provide an opportunity to look at how new technologies can support a reciprocal relationship between formal classroom learning and learning that can potentially occur in other everyday environments. Fundamentally many games are intensely engaging due to the resulting social interactions and technical challenges they provide to individual and group players. By introducing the use of mobile devices we can transport these characteristics of games into everyday spaces. LBGs are understood as a broad genre incorporating ideas and tools that provide many unique opportunities for us to to reveal, create and even subvert various social, cultural, technical, and scientific interpretations of place, in particular places where learning is sometimes problematic.--------- A team of Queensland game developers have learnt a great deal through designing a range of LBGs such as SCOOT for various user groups and places. While these LBGs were primarily designed as social events, we found that the players recognised and valued the game as an opportunity to learn about their environment, it's history, cultural significance, inhabitants, services etc. Since identifying the strong pedagogical outcomes of LBGs, the team has created a set of authoring tools for people to design and host their own LBGs. A particular version of this is known as MiLK the mobile learning kit for schools.---------- This presentation will include examples of how LBGs have been used to improve the teaching and learning outcomes in various contexts. Participants will be introduced to MiLK and invited to trial it in their own classrooms with students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the Bachelor of Design is the generic degree offered to the four disciplines of Architecture, Landscape Architecture, Industrial Design, and Interior Design within the School of Design at the Queensland University of Technology. Regardless of discipline, Digital Communication is a core unit taken by the 600 first year students entering the Bachelor of Design degree. Within the design disciplines the communication of the designer's intentions is achieved primarily through the use of graphic images, with written information being considered as supportive or secondary. As such, Digital Communication attempts to educate learners in the fundamentals of this graphic design communication, using a generic digital or software tool. Past iterations of the unit have not acknowledged the subtle difference in design communication of the different design disciplines involved, and has used a single generic software tool. Following a review of the unit in 2008, it was decided that a single generic software tool was no longer entirely sufficient. This decision was based on the recognition that there was an increasing emergence of discipline specific digital tools, and an expressed student desire and apparent aptitude to learn these discipline specific tools. As a result the unit was reconstructed in 2009 to offer both discipline specific and generic software instruction, if elected by the student. This paper, apart from offering the general context and pedagogy of the existing and restructured units, will more importantly offer research data that validates the changes made to the unit. Most significant of this new data is the results of surveys that authenticate actual student aptitude versus desire in learning discipline specific tools. This is done through an exposure of student self efficacy in problem resolution and technological prowess - generally and specifically within the unit. More traditional means of validation is also presented that includes the results of the generic university-wide Learning Experience Survey of the unit, as well as a comparison between the assessment results of the restructured unit versus the previous year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If mobile robots are to perform useful tasks in the real-world they will require a catalog of fundamental navigation competencies and a means to select between them. In this paper we describe our work on strongly vision-based competencies: road-following, person or vehicle following, pose and position stabilization. Results from experiments on an outdoor autonomous tractor, a car-like vehicle, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article described an open-source toolbox for machine vision called Machine Vision Toolbox (MVT). MVT includes more than 60 functions including image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration, and color space conversion. MVT can be used for research into machine vision but is also versatile enough to be usable for real-time work and even control. MVT, combined with MATLAB and a model workstation computer, is a useful and convenient environment for the investigation of machine vision algorithms. The article illustrated the use of a subset of toolbox functions for some typical problems and described MVT operations including the simulation of a complete image-based visual servo system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel vision-based technique for navigating an Unmanned Aerial Vehicle (UAV) through urban canyons. Our technique relies on both optic flow and stereo vision information. We show that the combination of stereo and optic-flow (stereo-flow) is more effective at navigating urban canyons than either technique alone. Optic flow from a pair of sideways-looking cameras is used to stay centered in a canyon and initiate turns at junctions, while stereo vision from a forward-facing stereo head is used to avoid obstacles to the front. The technique was tested in full on an autonomous tractor at CSIRO and in part on the USC autonomous helicopter. Experimental results are presented from these two robotic platforms operating in outdoor environments. We show that the autonomous tractor can navigate urban canyons using stereoflow, and that the autonomous helicopter can turn away from obstacles to the side using optic flow. In addition, preliminary results show that a single pair of forward-facing fisheye cameras can be used for both stereo and optic flow. The center portions of the fisheye images are used for stereo, while flow is measured in the periphery of the images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a security architecture for the basic cross indexing systems emerging as foundational structures in current health information systems. In these systems unique identifiers are issued to healthcare providers and consumers. In most cases, such numbering schemes are national in scope and must therefore necessarily be used via an indexing system to identify records contained in pre-existing local, regional or national health information systems. Most large scale electronic health record systems envisage that such correlation between national healthcare identifiers and pre-existing identifiers will be performed by some centrally administered cross referencing, or index system. This paper is concerned with the security architecture for such indexing servers and the manner in which they interface with pre-existing health systems (including both workstations and servers). The paper proposes two required structures to achieve the goal of a national scale, and secure exchange of electronic health information, including: (a) the employment of high trust computer systems to perform an indexing function, and (b) the development and deployment of an appropriate high trust interface module, a Healthcare Interface Processor (HIP), to be integrated into the connected workstations or servers of healthcare service providers. This proposed architecture is specifically oriented toward requirements identified in the Connectivity Architecture for Australia’s e-health scheme as outlined by NEHTA and the national e-health strategy released by the Australian Health Ministers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the concept of attribute-based authenticated key exchange (AB-AKE) within the framework of ciphertext policy attribute-based systems. A notion of AKE-security for AB-AKE is presented based on the security models for group key exchange protocols and also taking into account the security requirements generally considered in the ciphertext policy attribute-based setting. We also extend the paradigm of hybrid encryption to the ciphertext policy attribute-based encryption schemes. A new primitive called encapsulation policy attribute-based key encapsulation mechanism (EP-AB-KEM) is introduced and a notion of chosen ciphertext security is de�ned for EP-AB-KEMs. We propose an EP-AB-KEM from an existing attribute-based encryption scheme and show that it achieves chosen ciphertext security in the generic group and random oracle models. We present a generic one-round AB-AKE protocol that satis�es our AKE-security notion. The protocol is generically constructed from any EP-AB-KEM that satis�es chosen ciphertext security. Instantiating the generic AB-AKE protocol with our EP-AB-KEM will result in a concrete one-round AB-AKE protocol also secure in the generic group and random oracle models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer profiling is the automated forensic examination of a computer system in order to provide a human investigator with a characterisation of the activities that have taken place on that system. As part of this process, the logical components of the computer system – components such as users, files and applications - are enumerated and the relationships between them discovered and reported. This information is enriched with traces of historical activity drawn from system logs and from evidence of events found in the computer file system. A potential problem with the use of such information is that some of it may be inconsistent and contradictory thus compromising its value. This work examines the impact of temporal inconsistency in such information and discusses two types of temporal inconsistency that may arise – inconsistency arising out of the normal errant behaviour of a computer system, and inconsistency arising out of deliberate tampering by a suspect – and techniques for dealing with inconsistencies of the latter kind. We examine the impact of deliberate tampering through experiments conducted with prototype computer profiling software. Based on the results of these experiments, we discuss techniques which can be employed in computer profiling to deal with such temporal inconsistencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endoscopic approaches for anterior correction of idiopathic scoliosis are a relatively new surgical technique. This paper describes the development of patient-specific finite element modelling techniques to investigate the biomechanics of single rod anterior scoliosis correction. Spinal geometry is obtained from pre-operative CT scans and material properties for osteo-ligamentous spinal tissues are based on existing literature. The techniques being developed will allow pre-surgical prediction of stresses, forces and deformations in spinal tissues, rods and screws under post-operative physiological loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.