264 resultados para chaotic vibrations
Resumo:
Whelanite Ca5Cu2(OH)2CO3,Si6O17•4H2O is a hydrated hydroxy mixed anion compound with both silicate and carbonate anions in the formula. The structural characterisation of the mineral whelanite remains incomplete. Whelanite is probably a neosilicate with Cu2+ in square planar coordination. Two Raman bands at 1070 and 1094 cm-1 are assigned to the ν1 symmetric stretching modes of the CO32- units. The observation of two symmetric stretching modes supports the concept of two non-equivalent CO32- units in the whelanite structure. The intense sharp Raman band at 1006 cm-1 is assigned to the ν1 (A1g) symmetric stretching vibration of the Si6O17 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in whelanite is strongly distorted. A very intense Raman band observed at 666 cm-1 with a shoulder at 697 cm-1 is assigned to the ν4 vibrational modes. Intense Raman bands at 3534, 3556, 3550 and 3595 cm-1 are assigned to the stretching vibrations of the OH units. Low intensity Raman bands at 2910, 3187 and 3453 cm-1 are assigned to water stretching modes. Thus, vibrational spectroscopy has been used to characterise the molecular structure of whelanite. Whelanite is a mineral that could be conceived as a healing mineral
Resumo:
Planchéite Cu8Si8O22(OH)4•H2O is a hydrated copper hydroxy silicate. The objective of this work is to use Raman and infrared spectroscopy to determine the molecular structure of planchéite. Raman bands of planchéite at around 1048, 1081 and 1127 are described as the ν1 –SiO3 symmetric stretching vibrations; Raman bands at 828, 906 are attributed to the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 699 cm-1 is assigned to the ν4 bending modes of the -SiO3 units. The intense Raman band at 3479 cm-1 is ascribed to the stretching vibration of the OH units. The Raman band at 3250 cm-1 is evidence for water in the structure. A comparison of the spectra of planchéite with that of shattuckite and chrysocolla.
Resumo:
Arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6 belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy. The spectra show some commonality but the intensities of the peaks vary. Sharp intense Raman bands for the German sample, are observed at 972 and 814 cm−1 attributed to the ν1 PO43− and AsO43− symmetric stretching modes. Raman bands at 1014, 1057, 1148 and 1160 cm−1 are attributed to the ν1 PO2 symmetric stretching mode and ν3 PO43− antisymmetric stretching vibrations. Raman bands at 764 and 776 cm−1 and 758 and 756 cm−1 are assigned to the ν3 AsO43− antisymmetric stretching vibrations. For the Australian mineral, the ν1 PO43− band is found at 973 cm−1. The intensity of the arsenate bands observed at 814, 838 and 870 cm−1 is greatly enhanced. Two low intensity Raman bands at 1307 and 1332 cm−1 are assigned to hydroxyl deformation modes. The intense Raman band at 441 cm−1 with a shoulder at 462 cm−1 is assigned to the ν2 PO43− bending mode. Raman bands at 318 and 340 cm−1 are attributed to the (AsO4)3−ν2 bending. The broad band centred at 3301 cm−1 is assigned to water stretching vibrations and the sharper peak at 3473 cm−1 is assigned to the OH stretching vibrations. The observation of strong water stretching vibrations brings into question the actual formula of arsenogorceixite. It is proposed the formula is better written as BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6·xH2O. The observation of both phosphate and arsenate bands provides a clear example of solid solution formation.
Resumo:
Three wardite mineral samples from different origins have been analysed by vibrational spectroscopy. The mineral is unusual in that it belongs to a unique symmetry class, namely the tetragonal-trapezohedral group. The structure of wardite contains layers of corner-linked –OH bridged MO6 octahedra stacked along the tetragonal C-axis in a four-layer sequence and linked by PO4 groups. Consequentially not all phosphate units are identical. Thus, two intense Raman bands observed at 995 and 1051 cm-1 are assigned to the ν1 PO43- symmetric stretching mode. Intense Raman bands are observed at 605 and 618 cm-1 with shoulders at 578 and 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO43-. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Sharp infrared bands are observed at 3544 and 3611 cm-1 are attributed to the OH stretching vibrations of the hydroxyl units. Vibrational spectroscopy enables subtle details of the molecular structure of wardite to be determined.
Resumo:
Research suggests that students in their late teens and early twenties have not reached "identity formation" (James Marcia, 1969, 1980). The heightened anxiety and uncertainty about themselves and their future contribute to sometimes crippling fears emanating as anxiety, clinical depression and other mood disorders. This paper will explore some issues and suggest healthy ways of helping young people safely through these chaotic years and into a fulfilling career.
Resumo:
In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca4MgAl4(PO4)6.(OH)4.12H2O]. The presence of montgomeryite in deposits of the Jenolan Caves - Australia has been identified by X-ray diffraction (XRD). Raman spectroscopy complimented with infrared spectroscopy has been used to characterize the crystal structure of montgomeryite. The Raman spectrum of a standard montgomeryite mineral is identical to that of the Jenolan Caves sample. Bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of montgomeryite in the Jenolan Caves - Australia has been proven. A mechanism for the formation of montgomeryite is proposed.
Resumo:
Nekoite Ca3Si6O15•7H2O and okenite Ca10Si18O46•18H2O are both hydrated calcium silicates found respectively in contact metamorphosed limestone and in association with zeolites from the alteration of basalts. The minerals form two-Dimensional infinite sheets with other than six-membered rings with 3-, 4-, or 5-membered rings and 8-membered rings. The two minerals have been characterised by Raman, near-infrared and infrared spectroscopy. The Raman spectrum of nekoite is characterised by two sharp peaks at 1061 and 1092 cm-1 with bands of lesser intensity at 974, 994, 1023 and 1132 cm-1. The Raman spectrum of okenite shows an intense single Raman band at 1090 cm-1 with a shoulder band at 1075 cm-1.These bands are assigned to the SiO stretching vibrations of Si2O5 units. Raman water stretching bands of nekoite are observed at 3071, 3380, 3502 and 3567 cm-1. Raman spectrum of okenite shows water stretching bands at 3029, 3284, 3417, 3531 and 3607 cm-1. NIR spectra of the two minerals are subtly different inferring water with different hydrogen bond strengths. By using a Libowitzky empirical formula, hydrogen bond distances based upon these OH stretching vibrations. Two types of hydrogen bonds are distinguished: strong hydrogen bonds associated with structural water and weaker hydrogen bonds assigned to space filling water molecules.
Resumo:
Ajoite (K,Na)Cu7AlSi9O24(OH)6•3H2O is a mineral named after the Ajo district of Arizona. Raman and infrared spectroscopy were used to characterise the molecular structure of ajoite. The structure of the mineral shows disorder which is reflected in the difficulty of obtaining quality Raman spectra. The Raman spectrum is characterised by a broad spectral profile with a band at 1048 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Strong bands at 962, 1015 and 1139 cm-1 are assigned to the ν3 SiO4 antisymmetric stretching vibrations. Multiple ν4 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple AlO and CuO stretching bands are observed. Raman spectroscopy and confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the ajoite structure. Based upon the infrared spectra, water is involved in the ajoite structure, probably as zeolitic water.
Resumo:
The molecular structure of the sodium borate mineral ameghinite NaB3O3(OH)4 has been determined by the use of vibrational spectroscopy. The crystal structure consists of isolated [B3O3(OH)4]- units formed by one tetrahedron and two triangles. H bonds and Na atoms link these polyanions to form a 3-dimensional framework. The Raman spectrum is dominated by an intense band at 1027 cm-1, attributed to BO stretching vibrations of both the trigonal and tetrahedral boron. A series of Raman bands at 1213, 1245 and 1281cm-1 are ascribed to BOH in-plane bending modes. The infrared spectra are characterized by strong overlap of broad multiple bands. An intense Raman band found at 620 cm-1 is attributed to the bending modes of trigonal and tetrahedral boron. Multiple Raman bands in the OH stretching region are observed at 3206, 3249 and 3385 cm-1. Raman spectroscopy coupled with infrared spectroscopy has enabled aspects about the molecular structure of the borate mineral ameghinite to be assessed.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.
Resumo:
How do we create strong urban narratives? How do we create affection for our cities? Play, an essential part of any species' biological existence and development, can often be perceived as chaotic and derogatory to social and spatial order. Play is also often perceived as a creative force which generates social and spatial value. This paper looks at the design approaches to both chaotic and creative perceptions of publics at play in urban space. Commonly, Urban and Architectural Design constitutes reactive management of perceived chaos, which derogatorily effects our sensory and emotional engagement with space. Alternatively, Urban and Architectural Design can appeal to the creativity of play, by encouraging unsolicited novelty that is vital to strong experiential narratives in the city and iterating environments that encourage the emergence of physical, emotional and cultural invention. These perceptions of chaos and creativity affect the design methodology of professional practice. Tested through the exciting vehicle of Parkour as urban narrative, the constraints and opportunities of both approaches are presented.
Resumo:
Vibrational spectroscopy has been used to characterise the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O. The mineral is found in the oxidised zone of base metal deposits and interestingly is associated with copper silicate minerals including ajoite, kinoite, chrysocolla as well as wulfenite, willemite, mimetite and wickenburgite. Creaseyite is a mineral with zeolitic properties. A Raman band at 998 cm−1 is assigned to the SiO stretching vibration of SiO3 units. The Raman band at 1071 cm−1 is assigned to the SiO stretching vibrations of the Si2O5 units. Raman bands are found at 2750, 2902, 3162, 3470 and 3525 cm−1. The band at 3525 cm−1 is attributed to zeolitic water. Other bands are assigned to water coordinated to the metal cations. Vibrational spectroscopy enables aspects of the molecular structure of creaseyite to be determined.
Resumo:
The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.