343 resultados para channel topology prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and positions the file signatures model in the class of Vector Space retrieval models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Alcoholism imposes a tremendous social and economic burden. There are relatively few pharmacological treatments for alcoholism, with only moderate efficacy, and there is considerable interest in identifying additional therapeutic options. Alcohol exposure alters SK-type potassium channel (SK) function in limbic brain regions. Thus, positive SK modulators such as chlorzoxazone (CZX), a US Food and Drug Administration–approved centrally acting myorelaxant, might enhance SK function and decrease neuronal activity, resulting in reduced alcohol intake. Methods We examined whether CZX reduced alcohol consumption under two-bottle choice (20% alcohol and water) in rats with intermittent access to alcohol (IAA) or continuous access to alcohol (CAA). In addition, we used ex vivo electrophysiology to determine whether SK inhibition and activation can alter firing of nucleus accumbens (NAcb) core medium spiny neurons. Results Chlorzoxazone significantly and dose-dependently decreased alcohol but not water intake in IAA rats, with no effects in CAA rats. Chlorzoxazone also reduced alcohol preference in IAA but not CAA rats and reduced the tendency for rapid initial alcohol consumption in IAA rats. Chlorzoxazone reduction of IAA drinking was not explained by locomotor effects. Finally, NAcb core neurons ex vivo showed enhanced firing, reduced SK regulation of firing, and greater CZX inhibition of firing in IAA versus CAA rats. Conclusions The potent CZX-induced reduction of excessive IAA alcohol intake, with no effect on the more moderate intake in CAA rats, might reflect the greater CZX reduction in IAA NAcb core firing observed ex vivo. Thus, CZX could represent a novel and immediately accessible pharmacotherapeutic intervention for human alcoholism. Key Words: Alcohol intake; intermittent; neuro-adaptation; nucleus accumbens; SK potassium channel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early models of bankruptcy prediction employed financial ratios drawn from pre-bankruptcy financial statements and performed well both in-sample and out-of-sample. Since then there has been an ongoing effort in the literature to develop models with even greater predictive performance. A significant innovation in the literature was the introduction into bankruptcy prediction models of capital market data such as excess stock returns and stock return volatility, along with the application of the Black–Scholes–Merton option-pricing model. In this note, we test five key bankruptcy models from the literature using an upto- date data set and find that they each contain unique information regarding the probability of bankruptcy but that their performance varies over time. We build a new model comprising key variables from each of the five models and add a new variable that proxies for the degree of diversification within the firm. The degree of diversification is shown to be negatively associated with the risk of bankruptcy. This more general model outperforms the existing models in a variety of in-sample and out-of-sample tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.