757 resultados para Work stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occupational stress has been a concern for human resource managers in light of research investigating the work stressor-employee adjustment relationship. This research has consistently demonstrated many negative effects between stressors in the workplace and employee adjustment. A considerable amount of literature also describes potential moderators of this relationship. Subjective fit with organizational culture has been established as a significant predictor of employee job-related attitudes; however, research has neglected investigation of the potential moderating effect of subjective fit in the work stressor-employee adjustment process. It was predicted that perceptions of subjective fit with the organization’s values and goals would mitigate the negative effect of work stressors on employee adjustment in an employee sample from three organizations (N ¼ 256). Hierarchical multiple regression analyses revealed support for the stress-buffering effects of high subjective fit in the prediction of physical symptoms, job satisfaction, and intentions to leave. The theoretical and practical implications of the results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While increasing numbers of young high school students engage in part-time work, there is no consensus about its impact on educational outcomes. Indeed this field has had a dearth of research. The present paper presents a review of recent research, primarily from Australia and the US, although it is acknowledged that there are considerable contextual differences. Suggestions for school counsellors to harness the students’ experiences to assist in educational and career decision-making are presented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There are innumerable diabetes studies that have investigated associations between risk factors, protective factors, and health outcomes; however, these individual predictors are part of a complex network of interacting forces. Moreover, there is little awareness about resilience or its importance in chronic disease in adulthood, especially diabetes. Thus, this is the first study to: (1) extensively investigate the relationships among a host of predictors and multiple adaptive outcomes; and (2) conceptualise a resilience model among people with diabetes. Methods: This cross-sectional study was divided into two research studies. Study One was to translate two diabetes-specific instruments (Problem Areas In Diabetes, PAID; Diabetes Coping Measure, DCM) into a Chinese version and to examine their psychometric properties for use in Study Two in a convenience sample of 205 outpatients with type 2 diabetes. In Study Two, an integrated theoretical model is developed and evaluated using the structural equation modelling (SEM) technique. A self-administered questionnaire was completed by 345 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Results: Confirmatory factor analyses confirmed a one-factor structure of the PAID-C which was similar to the original version of the PAID. Strong content validity of the PAID-C was demonstrated. The PAID-C was associated with HbA1c and diabetes self-care behaviours, confirming satisfactory criterion validity. There was a moderate relationship between the PAID-C and the Perceived Stress Scale, supporting satisfactory convergent validity. The PAID-C also demonstrated satisfactory stability and high internal consistency. A four-factor structure and strong content validity of the DCM-C was confirmed. Criterion validity demonstrated that the DCM-C was significantly associated with HbA1c and diabetes self-care behaviours. There was a statistical correlation between the DCM-C and the Revised Ways of Coping Checklist, suggesting satisfactory convergent validity. Test-retest reliability demonstrated satisfactory stability of the DCM-C. The total scale of the DCM-C showed adequate internal consistency. Age, duration of diabetes, diabetes symptoms, diabetes distress, physical activity, coping strategies, and social support were the most consistent factors associated with adaptive outcomes in adults with diabetes. Resilience was positively associated with coping strategies, social support, health-related quality of life, and diabetes self-care behaviours. Results of the structural equation modelling revealed protective factors had a significant direct effect on adaptive outcomes; however, the construct of risk factors was not significantly related to adaptive outcomes. Moreover, resilience can moderate the relationships among protective factors and adaptive outcomes, but there were no interaction effects of risk factors and resilience on adaptive outcomes. Conclusion: This study contributes to an understanding of how risk factors and protective factors work together to influence adaptive outcomes in blood sugar control, health-related quality of life, and diabetes self-care behaviours. Additionally, resilience is a positive personality characteristic and may be importantly involved in the adjustment process among people living with type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major element in the architectural work experience program at Queensland University of Technology is the assessment reports provided by students and employers. This paper gives an analysis of assessments submitted during the period 2000 to 2007 as viewed from a practice-base perspective. By comparing the 398 student assessments with 403 employer assessments in five specific categories over an eight year period one is able to obtain a clear understanding of the performance of the program and the relevance of its various sections for its participants that is not always obvious in a yearly analysis. In the major work experience areas there is close agreement between the student and employer assessments. However, the analysis did highlight a misunderstanding of the program’s aims by some participants. Overall the students were very positive about the program and appreciated the opportunity to work on real projects and be given a degree of responsibility for these projects. For Work Integrated Learning (WIL) practitioners this study clearly demonstrates the value of obtaining assessments from students and employers in order to establish the acceptance of a WIL program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, some classroom experiments are described for correcting the common misconception that the operation of a siphon depends on atmospheric pressure. One experiment makes use of a chain model of a siphon and another demonstrates that flow rate is dependent on the height difference between the inflow and outflow of a siphon and not atmospheric pressure. A real-life example of the use of a siphon to refill a lake in South Australia is described, demonstrating that the siphon is not only of academic interest but has practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MDG deadline is fast approaching and the climate within the United Nations remains positive but skeptical. A common feeling is that a great deal of work and headway has been made, but the MDG goals will not be achieved in full by 2015. The largest problem facing the success of the MDGs is, and unless mitigated may remain, mismanaged governance. This argument is confirmed by a strong line of publications stemming from the United Nations and targeting methods (depending on a region or country context) such as improving governance via combating corruption, instituting accountability, peace and stability, as well as transparency. Furthermore, a logical assessment of the framework which MDGs operate in (i.e. international pressure and local civil socio-economic and/or political initiatives pushing governments to progress with MDGs) identifies the State's governing apparatus as the key to the success of MDGs. It is argued that a new analytic framework and grounded theory of democracy (the Element of Democracy) is needed in order to improve governance and enhance democracy. By looking beyond the confines of the MDGs and focusing on properly rectifying poor governance, the progress of MDGs can be accelerated as societies and their governments will be - at minimum - held more accountable to the success of programs in their respective countries. The paper demonstrates the logic of this argument - especially highlighting a new way of viewing democracy - and certain early practices which can accelerate MDGs in the short to medium term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes new droop control methods for load sharing in a rural area with distributed generation. Highly resistive lines, typical of rural low voltage networks, always create a big challenge for conventional droop control. To overcome the conflict between higher feedback gain for better power sharing and system stability in angle droop, two control methods have been proposed. The first method considers no communication among the distributed generators (DGs) and regulates the converter output voltage and angle ensuring proper sharing of load in a system having strong coupling between real and reactive power due to high line resistance. The second method, based on a smattering of communication, modifies the reference output volt-age angle of the DGs depending on the active and reactive power flow in the lines connected to point of common coupling (PCC). It is shown that with the second proposed control method, an economical and minimum communication system can achieve significant improvement in load sharing. The difference in error margin between proposed control schemes and a more costly high bandwidth communication system is small and the later may not be justified considering the increase in cost. The proposed control shows stable operation of the system for a range of operating conditions while ensuring satisfactory load sharing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method enhancing stability of an autonomous microgrid with distribution static compensator (DSTATCOM) and power sharing with multiple distributed generators (DG). It is assumed that all the DGs are connected through voltage source converter (VSC) and all connected loads are passive, making the microgrid totally inertia less. The VSCs are controlled by either state feedback or current feedback mode to achieve desired voltage-current or power outputs respectively. A modified angle droop is used for DG voltage reference generation. Power sharing ratio of the proposed droop control is established through derivation and verified by simulation results. A DSTATCOM is connected in the microgrid to provide ride through capability during power imbalance in the microgrid, thereby enhancing the system stability. This is established through extensive simulation studies using PSCAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the problem of appropriate load sharing in an autonomous microgrid. High gain angle droop control ensures proper load sharing, especially under weak system conditions. However it has a negative impact on overall stability. Frequency domain modeling, eigenvalue analysis and time domain simulations are used to demonstrate this conflict. A supplementary loop is proposed around a conventional droop control of each DG converter to stabilize the system while using high angle droop gains. Control loops are based on local power measurement and modulation of the d-axis voltage reference of each converter. Coordinated design of supplementary control loops for each DG is formulated as a parameter optimization problem and solved using an evolutionary technique. The sup-plementary droop control loop is shown to stabilize the system for a range of operating conditions while ensuring satisfactory load sharing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.