205 resultados para Volume holographic lenses
Resumo:
"Interventions for Addiction examines a wide range of responses to addictive behaviors, including psychosocial treatments, pharmacological treatments, provision of health care to addicted individuals, prevention, and public policy issues. Its focus is on the practical application of information covered in the two previous volumes of the series, Comprehensive Addictive Behaviors and Disorders. Readers will find information on treatments beyond commonly used methods, including Internet-based and faith-based therapies, and criminal justice interventions. The volume features extensive coverage of pharmacotherapies for each of the major drugs of abuse-including disulfiram, buprenorphine, naltrexone, and others-as well as for behavioral addictions. In considering public policy, the book examines legislative efforts, price controls, and limits on advertising, as well as World Health Organization (WHO) efforts. Interventions for Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website
Resumo:
It was widely anticipated that after the introduction of silicone hydrogel lenses, the risk of microbial keratitis would be lower than with hydrogel lenses because of the reduction in hypoxic effects on the corneal epithelium. Large-scale epidemiological studies have confirmed that the absolute and relative risk of microbial keratitis is unchanged with overnight use of silicone hydrogel materials. The key findings include the following: (1) The risk of infection with 30 nights of silicone hydrogel use is equivalent to 6 nights of hydrogel extended wear; (2) Occasional overnight lens use is associated with a greater risk than daily lens use; (3) The rate of vision loss due to corneal infection with silicone hydrogel contact lenses is similar to that seen in hydrogel lenses; (4) The spectrum of causative organisms is similar to that seen in hydrogel lenses, and the material type does not impact the corneal location of presumed microbial keratitis; and (5) Modifiable risk factors for infection include overnight lens use, the degree of exposure, failing to wash hands before lens handling, and storage case hygiene practice. The lack of change in the absolute risk of disease would suggest that exposure to large number of pathogenic organisms can overcome any advantages obtained from eliminating the hypoxic effects of contact lenses. Epidemiological studies remain important in the assessment of new materials and modalities. Consideration of an early adopter effect with studies involving new materials and modalities and further investigation of the impact of second-generation silicone hydrogel materials is warranted.
Resumo:
There are probably two main reasons why some practitioners do not bother fitting contact lenses – that it is not profitable and it is clinically too difficult. Although this article will concentrate on clinical issues rather than questions of profitability, I feel that the belief that contact lens fitting is not as profitable as prescribing spectacles is unfounded.
Resumo:
Current contact lens prescribing data speaks for itself: GP lenses represented 5 percent or less of fits in 13 of the 27 countries examined in the February 2009 article "International Contact Lens Prescribing in 2008" by Morgan et al. GP lens fitting is becoming a specialist activity undertaken by a minority of practitioners. I believe the question is no longer: "Are GP lenses on the decline?" but rather: "Why are GP lenses on the decline?" So, here I'll try to answer the latter question.
Resumo:
This book had to be written. Congratulations to British dispensing optician Timothy Bowden for his dogged determination in researching, writing and essentially self-publishing this hefty tome. How does one tackle the monumental task of tracking the complex history of the development of the contact lens, from the production of the first human artificial glass eyes by Ludwig Müller-Uri in Germany in 1835 to the sophisticated, high-technology, multi-billion dollar contact lens industry of today? The superficial answer may seem simple: do it chronologically, but it is much more difficult than that. Multiple contemporaneous and seemingly unconnected events often converged to result in ideas that elevated contact lens technology to the next level and many developments revolved around the deliberate and sometimes accidental activities of a long list of enthusiasts, inventors, entrepreneurs, businessmen, technicians, scientists, engineers, polymer scientists, opticians, optometrists and ophthalmologists.
Resumo:
The results of the annual survey on international contact lens fits have become available again, which presents a great opportunity to distill the RGP lens data to see what the status of RGP lenses is today as well as to revisit the last decade of RGP lens fitting and to look ahead to the next decade.
Resumo:
There have only been minor improvements in rigid lens material developments since silicone acrylates and fluoro-silicone acrylates were introduced over a quarter of a century ago. Although there have been enhancements in mechanical lathing technology in the rigid lens field - primarily as a result of developments in computer-controlled systems - rigid lenses are still manufactured using labour-intensive lathing processes, which is why the lens unit cost remains much higher than for disposable soft lenses.
Resumo:
Silicone hydrogel (SiH) contact lenses have been available for over a decade. During that time, these highly innovative materials and designs have continually improved and now represent a major percentage of fits within the global contact lens market.1 Their high oxygen transmissibility has drastically reduced the incidence of hypoxia-related conditions such as corneal edema, limbal hyperaemia, and corneal vascularisation.2,3 However, there remain significant challenges in the quest for the ideal contact lens. The silicone material used in SiH contact lenses is inherently more hydrophobic than the non-silicone hydrogel materials. SiH lens manufacturers must find ways to overcome lens surface hydrophobicity since it can create issues in terms of lens wettability and surface deposition. Achieving ideal lens water content presents yet another challenge since increasing water content in a silicone hydrogel lens can reduce oxygen transmissibility. This is because increasing water content results in decreased silicone content in the lens and silicone is a better transmitter of oxygen than water.
Resumo:
Contrary to what many practitioners believe, current generation contact lenses are easy to fit, are well tolerated, provide superior vision, are physiologically compatible with the anterior ocular structures, cause few serious complications and are cost effective. These factors will be explored with examples of advancements that have occurred in contact lens practice over the past two decades. Consideration will also be given to the role of optometrists, the contact lens industry and educational institutions in promoting contact lenses as an alternative form of vision correction.
Resumo:
Purpose:Multifocal contact lenses (MCLs) have been available for decades. A review of the literature suggests that while, historically, these lenses have been partially successful, they have struggled to compete with monovision (MV). More recent publications suggest that there has been an improvement in the performance of these lenses. This study set out to investigate whether the apparent improved lens performance reported in the literature is reflected in clinical practice. Methods:Data collected over the last 5yrs via the International Contact Lens Prescribing Survey Consortium was reviewed for patients over the age of 45yrs. The published reports of clinical trials were reviewed to assess lens performance over the time period. Results:Data review was of 16,680 presbyopic lens fits in 38 countries. The results are that 29% were fit with MCLs, 8% MV and 63% single vision (SV). A previous survey conducted in Australia during 1988-89 reported that 9% of presbyopes were fit with MCLs, 29% MV and 63% SV. The results from our survey for Australia alone were 28% (MV 13%) vs 9% (MV 29%) suggesting an increase in usage of MCLs from 1988-89 to 2010. A review of the literature indicates the reported level of visual acuities with MCLs in comparison to MV has remained equivalent over this time period, yet preference has switch from MV to MCLs. Conclusions:There is evidence that currently more MCLs than MV are being fit to presbyopes, compared to 1988-89. This increased use is likely due to the improved visual performance of these lenses, which is not demonstrated with acuity measures but reported by wearers, suggesting that patient-based subjective ratings are currently the best way to measure visual performance.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
The deposition of biological material (biofouling) onto polymeric contact lenses is thought to be a major contributor to lens discomfort and hence discontinuation of wear. We describe a method to characterize lipid deposits directly from worn contact lenses utilizing liquid extraction surface analysis coupled to tandem mass spectrometry (LESA-MS/MS). This technique effected facile and reproducible extraction of lipids from the contact lens surfaces and identified lipid molecular species representing all major classes present in human tear film. Our data show that LESA-MS/MS is a rapid and comprehensive technique for the characterization of lipid-related biofouling on polymer surfaces.