298 resultados para Vibration,
Resumo:
The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.
Resumo:
Raman spectroscopy has been used to characterise the antimonate mineral bahianite Al5Sb35+O14(OH)2 , a semi-precious gem stone. The mineral is characterised by an intense Raman band at 818 cm-1 assigned to Sb3O1413- stretching vibrations. Other lower intensity bands at 843 and 856 cm-1 are also assigned to this vibration and this concept suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 669 and 682 cm-1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm-1 may be assigned to δ SbOH deformation modes, whilst Raman bands at 3462 and 3495 cm-1 are assigned to AlOH stretching vibrations. Complexity in the low wave number region is attributed to the composition of the mineral.
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.
Resumo:
Raman spectra of antimonate mineral brizziite NaSbO3 were studied and related to the structure of the mineral. Two sharp bands at 617 and 660 cm-1 are attributed to the SbO3- symmetric stretching mode. The reason for two symmetric stretching vibrations depends upon the bonding of the SbO3- units. The band at 617 cm-1 is assigned to bonding through the Sb and the 660 cm-1 to bonding through the oxygen. The low intensity band at 508 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity bands were found at 503, 526 and 578 cm-1. Sharp Raman bands observed at 204, 230, 307 and 315 cm-1are assigned to OSbO bending modes. Raman spectroscopy enables a better understanding of the molecular structure of the mineral brizziite.
Resumo:
The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.
Resumo:
The arsenite minerals finnemanite Pb5(As3+O3)3Cl been studied by Raman spectroscopy. The most intense Raman band at 871 cm-1 is assigned to the ν1 (AsO3)3- symmetric stretching vibration. Three Raman bands at 898, 908 and 947 cm-1 are assigned to the ν3 (AsO3)3- antisymmetric stretching vibration. The observation of multiple antisymmetric stretching vibrations suggest that the (AsO3)3- units are not equivalent in the molecular structure of finnemanite. Two Raman bands at 383 and 399 cm-1 are assigned to the ν2 (AsO3)3- bending modes. DFT calculations enabled the position of AsO32- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands are observed at 115, 145, 162, 176, 192, 216 and 234 cm-1 as well. The two most intense bands are observed at 176 and 192 cm-1. These bands are assigned to PbCl stretching vibrations and result from transverse/ longitudinal splitting. The bands at 145 and 162 cm-1 may be assigned to Cl-Pb-Cl bending modes.
Resumo:
Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of these presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
Wideband frequency synthesisers have application in many areas, including test instrumentation and defence electronics. Miniaturisation of these devices provides many advantages to system designers, particularly in applications where extra space and weight are expensive. The purpose of this project was to miniaturise a wideband frequency synthesiser and package it for operation in several different environmental conditions while satisfying demanding technical specifications. The four primary and secondary goals to be achieved were: 1. an operating frequency range from low MHz to greater than 40 GHz, with resolution better than 1 MHz, 2. typical RF output power of +10 dBm, with maximum DC supply of 15 W, 3. synthesiser package of only 150 100 30 mm, and 4. operating temperatures from 20C to +71C, and vibration levels over 7 grms. This task was approached from multiple angles. Electrically, the system is designed to have as few functional blocks as possible. Off the shelf components are used for active functions instead of customised circuits. Mechanically, the synthesiser package is designed for efficient use of the available space. Two identical prototype synthesisers were manufactured to evaluate the design methodology and to show the repeatability of the design. Although further engineering development will improve the synthesiser’s performance, this project has successfully demonstrated a level of miniaturisation which sets a new benchmark for wideband synthesiser design. These synthesisers will meet the demands for smaller, lighter wideband sources. Potential applications include portable test equipment, radar and electronic surveillance systems on unmanned aerial vehicles. They are also useful for reducing the overall weight and power consumption of other systems, even if small dimensions are not essential.
Resumo:
High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.