270 resultados para Validation par connaissance expert
Resumo:
To compare measurements of retinal thickness (RT) and choroidal thickness (ChT) obtained with an optical low coherence reflectometry (OLCR) biometer (Lenstar LS 900) with those obtained with a spectral domain optical coherence tomographer (SD OCT) (Copernicus SOCT HR) in young normal subjects.
Resumo:
RAP-A was developed to meet the need for a universal resilience building program for teenagers which could be readily implemented in a school setting. A universal program targets all teenagers in a particular grade as opposed to those at higher risk for depression (indicated or selective approaches) or a treatment group. It is easier to recruit and engage adolescents in a universal approach where students do not face the risk of stigmatisation by being singled out for intervention. The Resourceful Adolescent Program (RAP: Shochet, Holland & Whitefield, 1997) was developed to meet this need.
Resumo:
The RAP-A Workbook comprises all of the handouts required for the program's individual and group activities. A Participant Workbook is required for each adolescent to write in, and keep at the end of the program.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Background: Patients with chest pain contribute substantially to emergency department attendances, lengthy hospital stay, and inpatient admissions. A reliable, reproducible, and fast process to identify patients presenting with chest pain who have a low short-term risk of a major adverse cardiac event is needed to facilitate early discharge. We aimed to prospectively validate the safety of a predefined 2-h accelerated diagnostic protocol (ADP) to assess patients presenting to the emergency department with chest pain symptoms suggestive of acute coronary syndrome. Methods: This observational study was undertaken in 14 emergency departments in nine countries in the Asia-Pacific region, in patients aged 18 years and older with at least 5 min of chest pain. The ADP included use of a structured pre-test probability scoring method (Thrombolysis in Myocardial Infarction [TIMI] score), electrocardiograph, and point-of-care biomarker panel of troponin, creatine kinase MB, and myoglobin. The primary endpoint was major adverse cardiac events within 30 days after initial presentation (including initial hospital attendance). This trial is registered with the Australia-New Zealand Clinical Trials Registry, number ACTRN12609000283279. Findings: 3582 consecutive patients were recruited and completed 30-day follow-up. 421 (11•8%) patients had a major adverse cardiac event. The ADP classified 352 (9•8%) patients as low risk and potentially suitable for early discharge. A major adverse cardiac event occurred in three (0•9%) of these patients, giving the ADP a sensitivity of 99•3% (95% CI 97•9–99•8), a negative predictive value of 99•1% (97•3–99•8), and a specificity of 11•0% (10•0–12•2). Interpretation: This novel ADP identifies patients at very low risk of a short-term major adverse cardiac event who might be suitable for early discharge. Such an approach could be used to decrease the overall observation periods and admissions for chest pain. The components needed for the implementation of this strategy are widely available. The ADP has the potential to affect health-service delivery worldwide.
Resumo:
During nutrition intervention programs, some form of dietary assessment is usually necessary. This dietary assessment can be for: initial screening; development of appropriate programs and activities; or, evaluation. Established methods of dietary assessment are not always practical, nor cost effective in such interventions, therefore an abbreviated dietary assessment tool is needed. The Queensland Nutrition Project developed such a tool for male Blue Collar Workers, the Food Behaviour Questionnaire, consisting of 27 food behaviour related questions. This tool has been validated in a sample of 23 men, through full dietary assessment obtained via food frequency questionnaires and 24 hour dietary recalls. Those questions which correlated poorly with the full dietary assessment were deleted from the tool. In all, 13 questions was all that was required to distinguish between high and low dietary intakes of particular nutrients. Three questions when combined had correlations with refined sugar between 0.617 and 0.730 (p<0.005); four questions when combined had correlations with dietary fibre as percentage of energy of 0.45 (p<0.05); five questions when combined had a correlation with total fat of 0.499 (p<0.05); and, 4 questions when combined had a correlation with saturated fat of between 0.451 and 0.589 (p<0.05). A significant correlation could not be found for food behaviour questions with respect to dietary sodium. Correlations for fat as a function of energy could not be found.
Resumo:
Background: Evidence-based practice (EBP) is embraced internationally as an ideal approach to improve patient outcomes and provide cost-effective care. However, despite the support for and apparent benefits of evidence-based practice, it has been shown to be complex and difficult to incorporate into the clinical setting. Research exploring implementation of evidence-based practice has highlighted many internal and external barriers including clinicians’ lack of knowledge and confidence to integrate EBP into their day-to-day work. Nurses in particular often feel ill-equipped with little confidence to find, appraise and implement evidence. Aims: The following study aimed to undertake preliminary testing of the psychometric properties of tools that measure nurses’ self-efficacy and outcome expectancy in regard to evidence-based practice. Methods: A survey design was utilised in which nurses who had either completed an EBP unit or were randomly selected from a major tertiary referral hospital in Brisbane, Australia were sent two newly developed tools: 1) Self-efficacy in Evidence-Based Practice (SE-EBP) scale and 2) Outcome Expectancy for Evidence-Based Practice (OE-EBP) scale. Results: Principal Axis Factoring found three factors with eigenvalues above one for the SE-EBP explaining 73% of the variance and one factor for the OE-EBP scale explaining 82% of the variance. Cronbach’s alpha for SE-EBP, three SE-EBP factors and OE-EBP were all >.91 suggesting some item redundancy. The SE-EBP was able to distinguish between those with no prior exposure to EBP and those who completed an introductory EBP unit. Conclusions: While further investigation of the validity of these tools is needed, preliminary testing indicates that the SE-EBP and OE-EBP scales are valid and reliable instruments for measuring health professionals’ confidence in the process and the outcomes of basing their practice on evidence.
Resumo:
Background When large scale trials are investigating the effects of interventions on appetite, it is paramount to efficiently monitor large amounts of human data. The original hand-held Electronic Appetite Ratings System (EARS) was designed to facilitate the administering and data management of visual analogue scales (VAS) of subjective appetite sensations. The purpose of this study was to validate a novel hand-held method (EARS II (HP® iPAQ)) against the standard Pen and Paper (P&P) method and the previously validated EARS. Methods Twelve participants (5 male, 7 female, aged 18-40) were involved in a fully repeated measures design. Participants were randomly assigned in a crossover design, to either high fat (>48% fat) or low fat (<28% fat) meal days, one week apart and completed ratings using the three data capture methods ordered according to Latin Square. The first set of appetite sensations was completed in a fasted state, immediately before a fixed breakfast. Thereafter, appetite sensations were completed every thirty minutes for 4h. An ad libitum lunch was provided immediately before completing a final set of appetite sensations. Results Repeated measures ANOVAs were conducted for ratings of hunger, fullness and desire to eat. There were no significant differences between P&P compared with either EARS or EARS II (p > 0.05). Correlation coefficients between P&P and EARS II, controlling for age and gender, were performed on Area Under the Curve ratings. R2 for Hunger (0.89), Fullness (0.96) and Desire to Eat (0.95) were statistically significant (p < 0.05). Conclusions EARS II was sensitive to the impact of a meal and recovery of appetite during the postprandial period and is therefore an effective device for monitoring appetite sensations. This study provides evidence and support for further validation of the novel EARS II method for monitoring appetite sensations during large scale studies. The added versatility means that future uses of the system provides the potential to monitor a range of other behavioural and physiological measures often important in clinical and free living trials.
Resumo:
Background Cohort studies can provide valuable evidence of cause and effect relationships but are subject to loss of participants over time, limiting the validity of findings. Computerised record linkage offers a passive and ongoing method of obtaining health outcomes from existing routinely collected data sources. However, the quality of record linkage is reliant upon the availability and accuracy of common identifying variables. We sought to develop and validate a method for linking a cohort study to a state-wide hospital admissions dataset with limited availability of unique identifying variables. Methods A sample of 2000 participants from a cohort study (n = 41 514) was linked to a state-wide hospitalisations dataset in Victoria, Australia using the national health insurance (Medicare) number and demographic data as identifying variables. Availability of the health insurance number was limited in both datasets; therefore linkage was undertaken both with and without use of this number and agreement tested between both algorithms. Sensitivity was calculated for a sub-sample of 101 participants with a hospital admission confirmed by medical record review. Results Of the 2000 study participants, 85% were found to have a record in the hospitalisations dataset when the national health insurance number and sex were used as linkage variables and 92% when demographic details only were used. When agreement between the two methods was tested the disagreement fraction was 9%, mainly due to "false positive" links when demographic details only were used. A final algorithm that used multiple combinations of identifying variables resulted in a match proportion of 87%. Sensitivity of this final linkage was 95%. Conclusions High quality record linkage of cohort data with a hospitalisations dataset that has limited identifiers can be achieved using combinations of a national health insurance number and demographic data as identifying variables.
Resumo:
The major limitation of current typing methods for Streptococcus pyogenes, such as emm sequence typing and T typing, is that these are based on regions subject to considerable selective pressure. Multilocus sequence typing (MLST) is a better indicator of the genetic backbone of a strain but is not widely used due to high costs. The objective of this study was to develop a robust and cost-effective alternative to S. pyogenes MLST. A 10-member single nucleotide polymorphism (SNP) set that provides a Simpson’s Index of Diversity (D) of 0.99 with respect to the S. pyogenes MLST database was derived. A typing format involving high-resolution melting (HRM) analysis of small fragments nucleated by each of the resolution-optimized SNPs was developed. The fragments were 59–119 bp in size and, based on differences in G+C content, were predicted to generate three to six resolvable HRM curves. The combination of curves across each of the 10 fragments can be used to generate a melt type (MelT) for each sequence type (ST). The 525 STs currently in the S. pyogenes MLST database are predicted to resolve into 298 distinct MelTs and the method is calculated to provide a D of 0.996 against the MLST database. The MelTs are concordant with the S. pyogenes population structure. To validate the method we examined clinical isolates of S. pyogenes of 70 STs. Curves were generated as predicted by G+C content discriminating the 70 STs into 65 distinct MelTs.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
A basic element in advertising strategy is the choice of an appeal. Many researchers have studied communication message form and specifically forms of literalism and symbolism, or some variation. The motives for such study are grounded in increasing the effectiveness of commercial communication messages, especially advertising messages. Advertising research studies typically use forms of literalism (e.g. informativeness) or symbolism (e.g. metaphoric, tropes, schemes figures of speech, and rhetorical figures) as independent variables and compare these against one or more of the traditional advertising effectiveness measures as dependent variable(s). The main challenge in assessing the effectiveness of literalism or symbolism in message content is the discreet identification of the construct. However, no standard, empirically-tested measure was located in the literature.
Resumo:
Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge.
Resumo:
A new decision-making tool that will assist designers in the selection of appropriate daylighting solutions for buildings in tropical locations has been previously proposed by the authors. Through an evaluation matrix that prioritizes the parameters that best respond to the needs of tropical climates (e.g. reducing solar gain and protection from glare) the tool determines the most appropriate devices for specific climate and building inputs. The tool is effective in demonstrating the broad benefits and limitations of the different daylight strategies for buildings in the tropics. However for thorough analysis and calibration of the tool, validation is necessary. This paper presents a first step in the validation process. RADIANCE simulations were conducted to compare simulation performance with the performance predicted by the tool. To this end, an office building case study in subtropical Brisbane, Australia, and five different daylighting devices including openings, light guiding systems and light transport systems were simulated. Illuminance, light uniformity, daylight penetration and glare analysis were assessed for each device. The results indicate the tool can appropriately rank and recommend daylighting strategies based on specific building inputs for tropical and subtropical regions, making it a useful resource for designers.