172 resultados para Tu (Trust Unit)
Resumo:
Many activities, from disaster response to project management, require cooperation among people from multiple organizations who initially lack interpersonal relationships and trust. Upon entering inter-organizational settings, pre-existing identities and expectations, along with emergent social roles and structures, may all influence trust between colleagues. To sort out these effects, we collected time-lagged data from three cohorts of military MBA students, representing 2,224 directed dyads, shortly after they entered graduate school. Dyads that shared organizational identity, boundary-spanning roles, and similar network positions (structural equivalence) were likely to have stronger professional ties and greater trust.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
Enterprises, both public and private, have rapidly commenced using the benefits of enterprise resource planning (ERP) combined with business analytics and “open data sets” which are often outside the control of the enterprise to gain further efficiencies, build new service operations and increase business activity. In many cases, these business activities are based around relevant software systems hosted in a “cloud computing” environment. “Garbage in, garbage out”, or “GIGO”, is a term long used to describe problems in unqualified dependency on information systems, dating from the 1960s. However, a more pertinent variation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems, such as ERP and usage of open datasets in a cloud environment, the ability to verify the authenticity of those data sets used may be almost impossible, resulting in dependence upon questionable results. Illicit data set “impersonation” becomes a reality. At the same time the ability to audit such results may be an important requirement, particularly in the public sector. This paper discusses the need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment and analyses some current technologies that are offered and which may be appropriate. However, severe limitations to addressing these requirements have been identified and the paper proposes further research work in the area.
Resumo:
An increasing number of countries are faced with an aging population increasingly needing healthcare services. For any e-health information system, the need for increased trust by such clients with potentially little knowledge of any security scheme involved is paramount. In addition notable scalability of any system has become a critical aspect of system design, development and ongoing management. Meanwhile cryptographic systems provide the security provisions needed for confidentiality, authentication, integrity and non-repudiation. Cryptographic key management, however, must be secure, yet efficient and effective in developing an attitude of trust in system users. Digital certificate-based Public Key Infrastructure has long been the technology of choice or availability for information security/assurance; however, there appears to be a notable lack of successful implementations and deployments globally. Moreover, recent issues with associated Certificate Authority security have damaged trust in these schemes. This paper proposes the adoption of a centralised public key registry structure, a non-certificate based scheme, for large scale e-health information systems. The proposed structure removes complex certificate management, revocation and a complex certificate validation structure while maintaining overall system security. Moreover, the registry concept may be easier for both healthcare professionals and patients to understand and trust.
Resumo:
Enterprise resource planning (ERP) systems are rapidly being combined with “big data” analytics processes and publicly available “open data sets”, which are usually outside the arena of the enterprise, to expand activity through better service to current clients as well as identifying new opportunities. Moreover, these activities are now largely based around relevant software systems hosted in a “cloud computing” environment. However, the over 50- year old phrase related to mistrust in computer systems, namely “garbage in, garbage out” or “GIGO”, is used to describe problems of unqualified and unquestioning dependency on information systems. However, a more relevant GIGO interpretation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems based around ERP and open datasets as well as “big data” analytics, particularly in a cloud environment, the ability to verify the authenticity and integrity of the data sets used may be almost impossible. In turn, this may easily result in decision making based upon questionable results which are unverifiable. Illicit “impersonation” of and modifications to legitimate data sets may become a reality while at the same time the ability to audit any derived results of analysis may be an important requirement, particularly in the public sector. The pressing need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment is discussed in this paper. Some current and appropriate technologies currently being offered are also examined. However, severe limitations in addressing the problems identified are found and the paper proposes further necessary research work for the area. (Note: This paper is based on an earlier unpublished paper/presentation “Identity, Addressing, Authenticity and Audit Requirements for Trust in ERP, Analytics and Big/Open Data in a ‘Cloud’ Computing Environment: A Review and Proposal” presented to the Department of Accounting and IT, College of Management, National Chung Chen University, 20 November 2013.)
Resumo:
This research used a multiple-case study approach to empirically investigate the complex relationship between factors influencing inter-project knowledge sharing—trustworthiness, organizational culture, and knowledge-sharing mechanisms. Adopting a competing values framework, we found evidence of patterns existing between the type of culture, on the project management unit level, and project managers’ perceptions of valuing trustworthy behaviors and the way they share knowledge, on the individual level. We also found evidence for mutually reinforcing the effect of trust and clan culture, which shape tacit knowledge-sharing behaviors.
Resumo:
Trust is widely recognized as one of the key qualities that a successful leader needs to bring about change within his/her organization. Literature has also shown that trust plays a pivotal role in effective school leadership. However, little research has been undertaken to identify specific actions of a transformational school leader enabling him/her to develop purposeful relationships of trust with his/her staff and Chair of the school’s governing body. Using a theoretical framework of transformational leadership in the context of the independent schooling sector in Australia, a multicase study of four highly trusted, transformational school leaders revealed 10 key trust building practices in the Head–staff dyad and three practices in the Head–Chair dyad. These practices were independent of the leader’s personal attributes. The study also revealed an inextricable link between trust and transformational leadership.
Resumo:
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Resumo:
Passively protected railway crossings are a major rail safety issue in Australia. Such crossings cannot be upgraded as such crossings are too numerous and the cost involved is prohibitive. Advanced Driver Assistance Systems (ADAS) have been shown to improve road safety and are widely used. These systems could be a solution to improve safety of passively protected crossings at a lower cost. Such complementary ADAS could result in driver’s over-trust due to the absence of Humane Machine Interface reflecting the quality of the information or the state of the ADAS (failure status). This paper demonstrates that driver’s exposure to crossing exhibiting fail-safe and non-fail safe properties could result in improperly allocating trust between technologies. We conducted a driving simulator study where participants (N=58) were exposed to three types of level crossing warning system on passive and active crossings. The results show that a significant proportion of participants over-trust the ADAS. Such drivers exhibit the same driving performance with the ADAS as when exposed to infrastructure based active crossing protection. They do not take the necessary safety precautions as they have a faster speed approach, reduced number of gaze toward the rail tracks and fail to stop at the crossing.
Resumo:
This article examines important insurance and trust law issues that may confront trustees charged with the governance and protection of unique properties with broad community and heritage significance. Often trustee roles are assumed by community leaders without full appreciation of the potential difficulties and consequences when unforeseen circumstances arise. Three recent New Zealand court decisions in relation to the deconstruction and repair of the Christchurch Cathedral and to the interim construction of a transitional"cardboard Cathedral" highlight how difficult - and legally exposed - the role of trustee can be. The Cathedral cases go to the heart of defining the core purpose for which a Trust is created and examine the scope of discretion in fulfilling this charge its Trustees carry. Arising in the wake of the devastating Christchurch earthquakes, the Cathedral's Trustees were called upon to consider the best directions forward for a criplled and dangerous building subject to potential demolition, the wellbeing of the Cathedral's direct community, and the broader heritage and identity factors that this 'heart' of Christchurch represented. In the context of a seemingly grossly underinsured material damage cover - and faced with broader losses across the Diocese's holdings - the Trustees found that their sense of mission failed to gel with that of a community-based heritage buildings preservation trust. The High Court had to consider how monies received under the material damage policy could be applied by the Trustee in deconstructing, reinstating or repairing the Cathedral and if monies could be partly deployed to create an interim solution in the former of a transitional cathedral - all this in the context of the site-specific purpose of the Cathedral trust. The cases emphasise further the need to assess professionally the nature and quantum of cover effected to protect against various risks. In addition, in the case of historic or unusual buildings extra care must be exercised to take account additional costs associated with reinstatement so as to substantially retain the character and intrinsic value of such properties.
Resumo:
This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.