195 resultados para Topologically Massive Yang-Mills
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.