270 resultados para Temperature programmed desorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic goethite and thermally treated goethite at different temperatures were used to remove phosphate from sewage. The effect of annealing temperature on phosphate removal over time was investigated. X-ray diffraction(XRD), transmission electron microscopy (TEM), N2 adsorption and desorption (BET), and infrared emission spectrum (FT-IES) were utilized to characterize the phase, morphology, specific surface area, pore distribution, and the surface groups of samples. The results show that annealed products of goethite at temperatures over 250 °C are hematite with the similar morphology as the original goethite with different hydroxyl groups and surface area. Increasing temperature causes the decrease in hydroxyl groups, consequential increase in surface area at first and then experiences a decrease (14.8–110.4–12.6 m2/g) and the subsequent formation of nanoscale pores. The variation rate of hydroxyl groups and surface area based on FT-IES and BET, respectively, are used to evaluate the effect of annealing temperature on phosphate removal. By using all of the characterization techniques, it is concluded that the changes of phosphate removal basically result from the total variation rate between hydroxyl groups and surface area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops analytical distributions of temperature indices on which temperature derivatives are written. If the deviations of daily temperatures from their expected values are modelled as an Ornstein-Uhlenbeck process with timevarying variance, then the distributions of the temperature index on which the derivative is written is the sum of truncated, correlated Gaussian deviates. The key result of this paper is to provide an analytical approximation to the distribution of this sum, thus allowing the accurate computation of payoffs without the need for any simulation. A data set comprising average daily temperature spanning over a hundred years for four Australian cities is used to demonstrate the efficacy of this approach for estimating the payoffs to temperature derivatives. It is demonstrated that expected payoffs computed directly from historical records are a particularly poor approach to the problem when there are trends in underlying average daily temperature. It is shown that the proposed analytical approach is superior to historical pricing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Women undergoing Cesarean Section (CS) are vulnerable to the adverse effects associated with perioperative core temperature drop, in part due to the tendency for CS to be performed under neuraxial anesthesia, blood and fluid loss, and vasodilation. Inadvertent perioperative hypothermia (IPH) is a common condition that affects patients undergoing surgery of all specialties and is detrimental to all age groups, including neonates. Previous systematic reviews on IPH prevention largely focus on either adult or all ages populations, and have mainly overlooked pregnant or CS patients as a distinct group. Not all recommendations made by systematic reviews targeting all adult patients may be transferable to CS patients. Alternative, effective methods for preventing or managing hypothermia in this group would be valuable. Objectives To synthesize the best available evidence in relation to preventing and/or treating hypothermia in mothers after CS surgery. Types of participants Adult patients over the age of 18 years, of any ethnic background, with or without co-morbidities, undergoing any mode of anesthesia for any type of CS (emergency or planned) at healthcare facilities who have received interventions to limit or manage perioperative core heat loss were included. Types of intervention(s) Active or passive warming methods versus usual care or placebo, that aim to limit or manage core heat loss as applied to women undergoing CS were included. Types of studies Randomized controlled trials (RCTs) that met the inclusion criteria, with reduction of perioperative hypothermia a primary or secondary outcome were considered. Types of outcomes Primary outcome: maternal core temperature measured during the preoperative, intraoperative and postoperative phases of care Secondary outcomes: newborn core temperature at birth, umbilical pH obtained immediately after birth, Apgar scores, length of Post Anesthetic Care Unit (PACU) stay, maternal thermal comfort. Search strategy A comprehensive search was undertaken of the following databases from their inception until May 2012: ProQuest, Web of Science, Scopus, Dissertation and Theses PQDT (via ProQuest), Current Contents, CENTRAL, Mednar, OpenGrey, Clinical Trials. There were no language restrictions. Methodological quality Retrieved papers were assessed for methodological quality by two independent reviewers prior to inclusion using JBI software. Disagreements were resolved via consultation with the third reviewer. An assessment of quality of the included papers was also made in relation to five key quality factors. Data collection Two independent reviewers extracted data from the included papers using a previously piloted customized data extraction tool. Results 12 studies with a combined total of 719 participants were included. Three broad intervention groups were identified; intravenous (IV) fluid warming, warming devices, leg wrapping. IV fluid warming, whether administered intraoperatively or preoperatively, was found to be effective at maintaining maternal (but not neonatal) temperature and preventing shivering, but does not improve thermal comfort. The effectiveness of IV fluid warming on Apgar scores and umbilical pH remains unclear. Warming devices, including forced air warming and under body carbon polymer mattresses, were effective at preventing hypothermia and reduced shivering, however were most effective if applied preoperatively. The effectiveness of warming devices to improve thermal comfort remains unclear. Preoperative forced air warming appears to aid maintenance of neonatal temperature, while intraoperative forced air warming does not. Forced air warming was not effective at improving Apgar scores and the effects for umbilical pH remain unclear. Conclusions Intravenous fluid warming, by any method, improves maternal temperature and reduces shivering for women undergoing CS. Preoperative body warming devices also improve maternal temperature, in addition to reducing shivering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature lignocellulose pretreatment process was developed using acid-catalysed mixtures of alkylene carbonate and alkylene glycol. Pretreatment of sugarcane bagasse with mixtures of ethylene carbonate (EC) and ethylene glycol (EG) was more effective than that with mixtures of propylene carbonate (PC) and propylene glycol (PG). These mixtures were more effective than the individual components in making bagasse cellulose more amenable to cellulase digestion. Glucan digestibilities of ≥87% could be achieved with a wide range of EC to EG ratios from 9:1 to 1:1 (w/w). Pretreatment of bagasse by the EC/EG mixture with a ratio of 4:1 in the presence of 1.2% H2SO4 at 90 °C for 30 min led to the highest glucan enzymatic digestibility of 93%. The high glucan digestibilities obtained under these acidic conditions were due to (a) the ability of alkylene carbonate to cause significant biomass size reduction, (b) the ability of alkylene glycol to cause biomass defibrillation, (c) the ability of alkylene carbonate and alkylene glycol to remove xylan and lignin, and (d) the magnified above attributes in the mixtures of alkylene carbonate and alkylene glycol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies examining the temperature–mortality association in a city used temperatures from one site or the average from a network of sites. This may cause measurement error as temperature varies across a city due to effects such as urban heat islands. We examined whether spatiotemporal models using spatially resolved temperatures produced different associations between temperature and mortality compared with time series models that used non-spatial temperatures. We obtained daily mortality data in 163 areas across Brisbane city, Australia from 2000 to 2004. We used ordinary kriging to interpolate spatial temperature variation across the city based on 19 monitoring sites. We used a spatiotemporal model to examine the impact of spatially resolved temperatures on mortality. Also, we used a time series model to examine non-spatial temperatures using a single site and the average temperature from three sites. We used squared Pearson scaled residuals to compare model fit. We found that kriged temperatures were consistent with observed temperatures. Spatiotemporal models using kriged temperature data yielded slightly better model fit than time series models using a single site or the average of three sites' data. Despite this better fit, spatiotemporal and time series models produced similar associations between temperature and mortality. In conclusion, time series models using non-spatial temperatures were equally good at estimating the city-wide association between temperature and mortality as spatiotemporal models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"To the Editor: Indigenous people face challenges that may make them more sensitive to extreme temperatures. These include poor health, inadequate infrastructure, and poverty.1 Few studies have examined the effects of extreme temperatures on Indigenous people2 or have considered the possible role of body mass in sensitivity to extreme temperatures..."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.