286 resultados para Television -- Antennas -- Design and construction -- Data processing
Resumo:
Heart disease is attributed as the highest cause of death in the world. Although this could be alleviated by heart transplantation, there is a chronic shortage of donor hearts and so mechanical solutions are being considered. Currently, many Ventricular Assist Devices (VADs) are being developed worldwide in an effort to increase life expectancy and quality of life for end stage heart failure patients. Current pre-clinical testing methods for VADs involve laboratory testing using Mock Circulation Loops (MCLs), and in vivo testing in animal models. The research and development of highly accurate MCLs is vital to the continuous improvement of VAD performance. The first objective of this study was to develop and validate a mathematical model of a MCL. This model could then be used in the design and construction of a variable compliance chamber to improve the performance of an existing MCL as well as form the basis for a new miniaturised MCL. An extensive review of literature was carried out on MCLs and mathematical modelling of their function. A mathematical model of a MCL was then created in the MATLAB/SIMULINK environment. This model included variable features such as resistance, fluid inertia and volumes (resulting from the pipe lengths and diameters); compliance of Windkessel chambers, atria and ventricles; density of both fluid and compressed air applied to the system; gravitational effects on vertical columns of fluid; and accurately modelled actuators controlling the ventricle contraction. This model was then validated using the physical properties and pressure and flow traces produced from a previously developed MCL. A variable compliance chamber was designed to reproduce parameters determined by the mathematical model. The function of the variability was achieved by controlling the transmural pressure across a diaphragm to alter the compliance of the system. An initial prototype was tested in a previously developed MCL, and a variable level of arterial compliance was successfully produced; however, the complete range of compliance values required for accurate physiological representation was not able to be produced with this initial design. The mathematical model was then used to design a smaller physical mock circulation loop, with the tubing sizes adjusted to produce accurate pressure and flow traces whilst having an appropriate frequency response characteristic. The development of the mathematical model greatly assisted the general design of an in vitro cardiovascular device test rig, while the variable compliance chamber allowed simple and real-time manipulation of MCL compliance to allow accurate transition between a variety of physiological conditions. The newly developed MCL produced an accurate design of a mechanical representation of the human circulatory system for in vitro cardiovascular device testing and education purposes. The continued improvement of VAD test rigs is essential if VAD design is to improve, and hence improve quality of life and life expectancy for heart failure patients.
Resumo:
This research applies an archaeological lens to an inner-city master planned development in order to investigate the tension between the design of space and the use of space. The chosen case study for this thesis is Kelvin Grove Urban Village (KGUV), located in inner city Brisbane, Australia. The site of this urban village has strong links to the past. KGUV draws on both the history of the place in particular along with more general mythologies of village life in its design and subsequent marketing approaches. The design and marketing approach depends upon notions of an imagined past where life in a place shaped like a traditional village was better and more socially sustainable than modern urban spaces. The appropriation of this urban village concept has been criticised as a shallow marketing ploy. The translation and applicability of the urban village model across time and space is therefore contentious. KGUV was considered both in terms of its design and marketing and in terms of a reading of the actual use of this master planned place. Central to this analysis is the figure of the boundary and related themes of social heterogeneity, inclusion and exclusion. The refraction of history in the site is also an important theme. An interpretive archaeological approach was used overall as a novel method to derive this analysis.
Resumo:
Participatory design has the moral and pragmatic tenet of including those who will be most affected by a design into the design process. However, good participation is hard to achieve and results linking project success and degree of participation are inconsistent. Through three case studies examining some of the challenges that different properties of knowledge – novelty, difference, dependence – can impose on the participatory endeavour we examine some of the consequences to the participatory process of failing to bridge across knowledge boundaries – syntactic, semantic, and pragmatic. One pragmatic consequence, disrupting the user’s feeling of involvement to the project, has been suggested as a possible explanation for the inconsistent results linking participation and project success. To aid in addressing these issues a new form of participatory research, called embedded research, is proposed and examined within the framework of the case studies and knowledge framework with a call for future research into its possibilities.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIM-compatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIMcompatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Blogs, wikis and podcasts : collaborative knowledge building tools in a design and technology course
Resumo:
Design and Technology has become an important part of the school curriculum. In Queensland, Australia, Technology (which encompasses Design) is one of the Key Learning Areas (KLAs) for students in the first ten years of schooling. This KLA adopts a student-centred, hands-on constructivist approach to teaching and learning. The ability to conceptualise and implement appropriate learning experiences, however, has been a challenge for some early career teachers. This paper describes how Design and Technology is being taught to pre-service primary teachers at an Australian University through their involvement in a range of authentic problem-solving activities supported by social learning tools such as wikis and blogs. An interview with a sample from this group (N=5) provides an insight into how these social software tools enhanced their knowledge and learning. This paper will describe how these social learning tools impact on the agency of learning.
Resumo:
Objectives: This paper sought to identify the behaviour change targets for an injury prevention program; Skills for Preventing Injury in Youth, SPIY. The aim was to explore how such behaviours could subsequently be implemented and evaluated in the program. Methods and Design: The quantitative procedure involved a survey with 267 Year 8 and 9 students (mean age 13.23 years) regarding their engagement in risk-taking behaviours that may lead to injury. The qualitative study involved 30 students aged 14 to 17 years reporting their experiences of injury and risk-taking. Results: Injury risk behaviours co-occurred among three-quarters of those who reported engaging in any alcohol use or transport or violence related injury risk behaviour. Students described in detail some of these experiences. Conclusions: The selection process of identifying target behaviours for change for an injury prevention program is described. Adolescents’ description of such risk behaviours can inform the process of operationalising and contextualising program content and deciding on evaluation methodology. The design of an effective injury prevention program involves considerable preparatory work and this paper was able to describe the process of identifying the behavioural targets for change that can be operationalised and evaluated in the injury prevention program, SPIY.
Resumo:
The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.
Resumo:
The rise of the ‘practice-led’ research approach has given us a new way of understanding what creative practice in art, design and media can do in the academy and the world— it can materialise new ideas and forms into being as a form of experimental research. Yet, to date, attention around the world, and especially in Australia, has been chiefly directed at the postgraduate research degrees, most notably the PhD or doctoral equivalents. Recent mapping projects and surveys of practice-led research in Australia reveal much about the institutional conditions of higher degree researchers, supervisors, examiners and research training (Baker et al 2009; Evans et al 2003; Dally et al 2004; Paltridge et al 2009; Phillips et al 2009). Given this focus, we might well ask: is the practice-led approach destined to be a part of the higher degree ghetto only, or does it have an afterlife? What is the place of ‘practice-led’ beyond the postgraduate degree? After all postgraduate researchers do not remain postgraduates forever, and perhaps the practice-led approach to research may have benefits in wider university, professional and communal contexts.
Resumo:
Client-side project managers face challenges in motivating project organisations to pursue exceptional design and construction performance. One approach to improving the motivation of project organisations is by offering a financial incentive reward for the achievement of voluntary performance standards above the minimum required standard. However, little investigation has been undertaken into the features of a successful incentive system as a part of an overall procurement strategy. In response to a lack of information available to client-side project managers tasked with the initial design of an incentive system, the paper explores motivation under a successful incentive and identifies key learnings for client-side project managers to consider when designing incentives. Our findings are based on the results of a large Australian case study which is interpreted against a conceptual framework based on both economic and psychological perspectives of motivation. The results suggest that motivation towards incentive goals is influenced by the value the project organisations place on the incentive reward as a commercial opportunity to increase their profit margins. However, perhaps more important are the relationship management processes that promote commitment to the project; and pride in the achievement of project goals. In the case study, these processes intensified the direct motivational effect of the incentive reward on offer. The findings also highlight the importance of ensuring that incentive goals and performance measurement processes remain relevant to the organisations throughout a project to continuously encourage motivation under changing project conditions.
Resumo:
My perspective on the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of WA which resulted in the design and construction of the ‘Hhouse’ at Bremer Bay. The house was developed using a ‘ground up’ approach whereby I conducted a topographical survey and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. My intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of the site. I was also seeking a means—through architectural design—of linking the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change.
Resumo:
Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Objectives: The Nurse Researcher Project (NRP) was initiated to support development of a nursing research and evidence based practice culture in Cancer Care Services (CCS) in a large tertiary hospital in Australia. The position was established and evaluated to inform future directions in the organisation.---------- Background: The demand for quality cancer care has been expanding over the past decades. Nurses are well placed to make an impact on improving health outcomes of people affected by cancer. At the same time, there is a robust body of literature documenting the barriers to undertaking and utilising research by and for nurses and nursing. A number of strategies have been implemented to address these barriers including a range of staff researcher positions but there is scant attention to evaluating the outcomes of these strategies. The role of nurse researcher has been documented in the literature with the aim to provide support to nurses in the clinical setting. There is, to date, little information in relation to the design, implementation and evaluation of this role.---------- Design: The Donabedian’s model of program evaluation was used to implement and evaluate this initiative.---------- Methods: The ‘NRP’ outlined the steps needed to implement the nurse researcher role in a clinical setting. The steps involved the design of the role, planning for the support system for the role, and evaluation of outcomes of the role over two years.---------- Discussion: This paper proposes an innovative and feasible model to support clinical nursing research which would be relevant to a range of service areas.---------- Conclusion: Nurse researchers are able to play a crucial role in advancing nursing knowledge and facilitating evidence based practice, especially when placed to support a specialised team of nurses at a service level. This role can be implemented through appropriate planning of the position, building a support system and incorporating an evaluation plan.