198 resultados para Technological Index
Resumo:
We present a method for optical encryption of information, based on the time-dependent dynamics of writing and erasure of refractive index changes in a bulk lithium niobate medium. Information is written into the photorefractive crystal with a spatially amplitude modulated laser beam which when overexposed significantly degrades the stored data making it unrecognizable. We show that the degradation can be reversed and that a one-to-one relationship exists between the degradation and recovery rates. It is shown that this simple relationship can be used to determine the erasure time required for decrypting the scrambled index patterns. In addition, this method could be used as a straightforward general technique for determining characteristic writing and erasure rates in photorefractive media.
Resumo:
The role of polymer chemistry (pure and applied sciences) is very prominent in the world of science today, but it is heading away from polymers and polymer blends towards composites and nanocomposites. This allows for the creation of new materials with unique properties and new possibilities which is the subject of this new book.
Resumo:
Government action is essential to increase the healthiness of food environments and reduce obesity, diet-related non-communicable diseases (NCDs), and their related inequalities. This paper proposes a monitoring framework to assess government policies and actions for creating healthy food environments. Recommendations from relevant authoritative organizations and expert advisory groups for reducing obesity and NCDs were examined, and pertinent components were incorporated into a comprehensive framework for monitoring government policies and actions. A Government Healthy Food Environment Policy Index (Food-EPI) was developed, which comprises a ‘policy’ component with seven domains on specific aspects of food environments, and an ‘infrastructure support’ component with seven domains to strengthen systems to prevent obesity and NCDs. These were revised through a week-long consultation process with international experts. Examples of good practice statements are proposed within each domain, and these will evolve into benchmarks established by governments at the forefront of creating and implementing food policies for good health. A rating process is proposed to assess a government's level of policy implementation towards good practice. The Food-EPI will be pre-tested and piloted in countries of varying size and income levels. The benchmarking of government policy implementation has the potential to catalyse greater action to reduce obesity and NCDs.
Resumo:
This paper presents an analysis of the studio as the signature pedagogy of design education. A number of theoretical models of learning, pedagogy, and education are used to interrogate the studio for its advantages and shortcomings, and to identify opportunities for the integration of new technologies and to explore the affordances that they might offer. In particular the theoretical ideas of signature pedagogies, conversational frameworks, and pedagogical patterns are used to justify the ‘unique’ status of the studio as a dominant learning environment and mode of delivery within design education. Such analysis identifies the opportunities for technological intervention and enhancement of the design studio through a re-examining of its fundamental pedagogical signature. This paper maps the dimensions and qualities that define the signature pedagogy against a range of delivery modes and technological media forms. Through such investigation it seeks to identify appropriate opportunities for technology; in essence offering a structure or framework for the analysis of future enquiry and experimentation.
Resumo:
Background It is evident from previous research that the role of dietary composition in relation to the development of childhood obesity remains inconclusive. Several studies investigating the relationship between body mass index (BMI), waist circumference (WC) and/or skin fold measurements with energy intake have suggested that the macronutrient composition of the diet (protein, carbohydrate, fat) may play an important contributing role to obesity in childhood as it does in adults. This study investigated the possible relationship between BMI and WC with energy intake and percentage energy intake from macronutrients in Australian children and adolescents. Methods Height, weight and WC measurements, along with 24 h food and drink records (FDR) intake data were collected from 2460 boys and girls aged 5-17 years living in the state of Queensland, Australia. Results Statistically significant, yet weak correlations between BMI z-score and WC with total energy intake were observed in grades 1, 5 and 10, with only 55% of subjects having a physiologically plausible 24 hr FDR. Using Pearson correlations to examine the relationship between BMI and WC with energy intake and percentage macronutrient intake, no significant correlations were observed between BMI z-score or WC and percentage energy intake from protein, carbohydrate or fat. One way ANOVAs showed that although those with a higher BMI z-score or WC consumed significantly more energy than their lean counterparts. Conclusion No evidence of an association between percentage macronutrient intake and BMI or WC was found. Evidently, more robust longitudinal studies are needed to elucidate the relationship linking obesity and dietary intake.
Resumo:
Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.
Resumo:
Forming peer alliances to share and build knowledge is an important aspect of community arts practice, and these co-creation processes are increasingly being mediated by the internet. This paper offers guidance for practitioners who are interested in better utilising the internet to connect, share, and make new knowledge. It argues that new approaches are required to foster the organising activities that underpin online co-creation, building from the premise that people have become increasingly networked as individuals rather than in groups (Rainie and Wellman 2012: 6), and that these new ways of connecting enable new modes of peer-to-peer production and exchange. This position advocates that practitioners move beyond situating the internet as a platform for dissemination and a tool for co-creating media, to embrace its knowledge collaboration potential. Drawing on a design experiment I developed to promote online knowledge co-creation, this paper suggests three development phases – developing connections, developing ideas, and developing agility – to ground six methods. They are: switching and routing, engaging in small trades of ideas with networked individuals; organising, co-ordinating networked individuals and their data; beta-release, offering ‘beta’ artifacts as knowledge trades; beta-testing, trialing and modifying other peoples ‘beta’ ideas; adapting, responding to technological disruption; and, reconfiguring, embracing opportunities offered by technological disruption. These approaches position knowledge co-creation as another capability of the community artist, along with co-creating art and media.
Resumo:
This paper considers an emerging planning practice that uses networked connections to interact with urban places and re-create enlivened cities. The paper presents “urban acupuncture” as a new planning approach that broadens communication and strategically targets interventions across the city. Defined as an approach, which, through the use of digital social networks and interactions, involves citizens and planners in place activations in order to stimulate and reinvigorate place, thus creating meaningful relationships between citizens and their urban settings. This paper uses the UR[BNE] Brisbane Festival 2012 as a qualitative case study of urban acupuncture, best defined as a hyper-localized healing treatment through place activation to enliven and recreate cities. It examines the challenges faced and opportunities embraced by a network of urban professionals. Their aim was to activate the underused urban spaces of central Brisbane through the festival's activities and events. The findings identify the key elements required to design public spaces using socially and technologically networked interactions.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.
Resumo:
This paper focuses on Australian development firms in the console and mobile games industry in order to understand how small firms in a geographically remote and marginal position in the global industry are able to relate to global firms and capture revenue share. This paper shows that, while technological change in the games industry has resulted in the emergence of new industry segments based on transactional rather than relational forms of economic coordination, in which we might therefore expect less asymmetrical power relations, lead firms retain a position of power in the global games entertainment industry relative to remote developers. This has been possible because lead firms in the emerging mobile devices market have developed and sustained bottlenecks in their segment of the industry through platform competition and the development of an intensely competitive ecosystem of developers. Our research shows the critical role of platform competition and bottlenecks in influencing power asymmetries within global markets.
Resumo:
The aim of this study was to examine whether takeaway food consumption mediated (explained) the association between socioeconomic position and body mass index (BMI). A postal-survey was conducted among 1500 randomly selected adults aged between 25 and 64 years in Brisbane, Australia during 2009 (response rate 63.7%, N=903). BMI was calculated using self-reported weight and height. Participants reported usual takeaway food consumption, and these takeaway items were categorised into "healthy" and "less healthy" choices. Socioeconomic position was ascertained by education, household income, and occupation. The mean BMI was 27.1kg/m(2) for men and 25.7kg/m(2) for women. Among men, none of the socioeconomic measures were associated with BMI. In contrast, women with diploma/vocational education (β=2.12) and high school only (β=2.60), and those who were white-collar (β=1.55) and blue-collar employees (β=2.83) had significantly greater BMI compared with their more advantaged counterparts. However, household income was not associated with BMI. Among women, the consumption of "less healthy" takeaway food mediated BMI differences between the least and most educated, and between those employed in blue collar occupations and their higher status counterparts. Decreasing the consumption of "less healthy" takeaway options may reduce socioeconomic inequalities in overweight and obesity among women but not men.
Resumo:
ZnO is a promising photoanode material for dye-sensitized solar cells (DSCs) due to its high bulk electron mobility and because different geometrical structures can easily be tailored. Although various strategies have been taken to improve ZnO-based DSC efficiencies, their performances are still far lower than TiO2 counterparts, mainly because low conductivity Zn2+–dye complexes form on the ZnO surfaces. Here, cone-shaped ZnO nanocrystals with exposed reactive O-terminated {101̅1} facets were synthesized and applied in DSC devices. The devices were compared with DSCs made from more commonly used rod-shaped ZnO nanocrystals where {101̅0} facets are predominantly exposed. When cone-shaped ZnO nanocrystals were used, DSCs sensitized with C218, N719, and D205 dyes universally displayed better power conversion efficiency, with the highest photoconversion efficiency of 4.36% observed with the C218 dye. First-principles calculations indicated that the enhanced DSCs performance with ZnO nanocone photoanodes could be attributed to the strength of binding between the dye molecules and reactive O-terminated {101̅1} ZnO facets and that more effective use of dye molecules occurred due to a significantly less dye aggregation on these ZnO surfaces compared to other ZnO facets.
Resumo:
The internationalisation process of firms has attracted much research interest since the 1970s. It is noted, however, that a significant research gap exists in studies with a primary focus on the pre-internationalisation behaviour of firms. This paper proposes the incorporation of a pre-internationalisation phase into the traditional Uppsala model of firm internationalisation to address the issue of export readiness. Through extensive literature review, the concepts fundamental to the ability of an Uppsala type firm to begin internationalisation through an export entry mode are identified: exposure to stimuli factors, attitudinal commitment of decision makers towards exporting, the firm’s resource capabilities, as well as the moderating effect of lateral rigidity. The concept of export readiness is operationalised in this study through the construction of an export readiness index (ERI) using exploratory and confirmatory factor analysis. The index is then applied to some representative cases and tested using logistic regression to establish its validity as a diagnostic tool. The proposed ERI presents not only a more practical approach towards analysing firms’ export readiness but has also major public policy implications as a possible tool for government export promotion agencies.
Resumo:
This study attempts to develop a better understanding of the challenges of knowledge integration (KI) within the innovation process in Small and Medium Enterprises (SMEs). Using several case studies, this study investigates how knowledge integration may be managed within the context of innovation in SMEs. The research places particular focus on identifying the challenges of knowledge integration in SMEs in relation to three aspects of knowledge integration activities, namely knowledge identification, knowledge acquisition, and knowledge sharing. Four distinct tasks emerged in the knowledge integration process, namely team building capability, capturing tacit knowledge, role of knowledge management (KM) systems, and technological systemic integration. The paper suggests that managing knowledge integration in SMEs can be best managed by focusing on these four tasks, which in turn will lead to innovation.
Resumo:
Phishing is deceptive collection of personal information leading to embezzlement, identity theft, and so on. Preventive and combative measures have been taken by banking institutions, software vendors, and network authorities to fight phishing. At the forefront of this resilience are consortiums such as APWG (Anti-Phishing Working Group) and PhishTank, the latter being a collaborative platform where everyone can submit potentially phishing web-pages and classify web-pages as either phish or genuine. PhishTank also has an API that the browsers use to notify users when she tries to load a phishing page. There are some organizations and individuals who are very active and highly accurate in classifying web-pages on PhishTank. In this paper, we propose a defense model that uses these experts to fight phishing.