358 resultados para THEORETICAL PREDICTION
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Optimum Wellness involves the development, refinement and practice of lifestyle choices which resonate with personally meaningful frames of reference. Personal transformations are the means by which our frames of reference are refined across the lifespan. It is through critical reflection, supportive relationships and meaning making of our experiences that we construct and reconstruct our life paths. When individuals are able to be what they are destined to be or reach their higher purpose, then they are able to contribute to the world in positive and meaningful ways. Transformative education facilitates the changes in perspective that enable one to contemplate and travel a path in life that leads to self-actualisation. This thesis argues for an integrated theoretical framework for optimum Wellness Education. It establishes a learner centred approach to Wellness education in the form of an integrated instructional design framework derived from both Wellness and Transformative education constructs. Students’ approaches to learning and their study strategies in a Wellness education context serve to highlight convergences in the manner in which students can experience perspective transformation. As they learn to critically reflect, pursue relationships and adapt their frames of reference to sustain their pursuit of both learning and Wellness goals, strengthening the nexus between instrumental and transformative learning is a strategically important goal for educators. The aim of this exploratory research study was to examine those facets that serve to optimise the learning experiences of students in a Wellness course. This was accomplished through three research issues: 1) What are the relationships between Wellness, approaches to learning and academic success? 2) How are students approaching learning in an undergraduate Wellness subject? Why are students approaching their learning in the ways they do? 3) What sorts of transformations are students experiencing in their Wellness? How can transformative education be formulated in the context of an undergraduate Wellness subject? Subsequent to a thorough review of the literature pertaining to Wellness education, a mixed method embedded case study design was formulated to explore the research issues. This thesis examines the interrelationships between student, content and context in a one semester university undergraduate unit (a coherent set of learning activities which is assigned a unit code and a credit point value). The experiences of a cohort of 285 undergraduate students in a Wellness course formed the unit of study and seven individual students from a total of sixteen volunteers whose profiles could be constructed from complete data sets were selected for analysis as embedded cases. The introductory level course required participants to engage in a personal project involving a behaviour modification plan for a self-selected, single dimension of Wellness. Students were given access to the Standard Edition Testwell Survey to assess and report their Wellness as a part of their personal projects. To identify relationships among the constructs of Self-Regulated Learning (SRL), Wellness and Student Approaches to Learning (SAL) a blend of quantitative and qualitative methods to collect and analyse data was formulated. Surveys were the primary instruments for acquiring quantitative data. Sources included the Wellness data from Testwell surveys, SAL data from R-SPQ surveys, SRL data from MSLQ surveys and student self-evaluation data from an end of semester survey. Students’ final grades and GPA scores were used as indicators of academic performance. The sources of qualitative data included subject documentation, structured interview transcripts and open-ended responses to survey items. Subsequent to a pilot study in which survey reliability and validity were tested in context, amendments to processes for and instruments of data collection were made. Students who adopted meaning oriented (deep/achieving) approaches tended to assess their Wellness at a higher level, seek effective learning strategies and perform better in formal study. Posttest data in the main study revealed that there were significant positive statistical relationships between academic performance and total wellness scores (rs=.297, n=205, p<.01). Deep (rs=.343, n=137, p<.01) and achieving (rs=.286, n=123, p<.01) approaches to learning also significantly correlated with Wellness whilst surface approaches had negative correlations that were not significant. SRL strategies including metacognitive selfregulation, effort, help-seeking and critical thinking were increasingly correlated with Wellness. Qualitative findings suggest that while all students adopt similar patterns of day to day activities for example attending classes, taking notes, working on assignments the level of care with which these activities is undertaken varies considerably. The dominant motivational trigger for students in this cohort was the personal relevance and associated benefits of the material being learned and practiced. Students were inclined to set goals that had a positive impact on affect and used “sense of happiness” to evaluate their achievement status. Students who had a higher drive to succeed and/or understand tended to have or seek a wider range of strategies. Their goal orientations were generally learning rather than performance based and barriers presented a challenge which could be overcome as opposed to a blockage which prevented progress. Findings from an empirical analysis of the Testwell data suggest that a single third order Wellness construct exists. A revision of the instrument is necessary in order to juxtapose it with the chosen six dimensional Wellness model that forms the foundation construct in the course. Further, redevelopment should be sensitive to the Australian context and culture including choice of language, examples and scenarios used in item construction. This study concludes with an heuristic for use in Wellness education. Guided by principles of Transformative education theory and behaviour change theory, and informed by this representative case study the “CARING” heuristic is proposed as an instructional design tool for Wellness educators seeking to foster transformative learning. Based upon this study, recommendations were made for university educators to provide authentic and personal experiences in Wellness curricula. Emphasis must focus on involving students and teachers in a partnership for implementing Wellness programs both in the curriculum and co-curricularly. The implications of this research for practice are predicated on the willingness of academics to embrace transformative learning at a personal level and a professional one. To explore students’ profiles in detail is not practical however teaching students how to guide us in supporting them through the “pain” of learning is a skill which would benefit them and optimise the learning and teaching process. At a theoretical level, this research contributes to an ecological theory of Wellness education as transformational change. By signposting the wider contexts in which learning takes place, it seeks to encourage changing paradigms to ones which harness the energy of each successive contextual layer in which students live. Future research which amplifies the qualities of individuals and groups who are “Well” and seeks the refinement and development of instruments to measure Wellness constructs would be desirable for both theoretical and applied knowledge bases. Mixed method Wellness research derived and conducted by teams that incorporate expertise from multiple disciplines such as psychology, anthropology, education, and medicine would enable creative and multi-perspective programs of investigation to be designed and implemented. Congruences and inconsistencies in health promotion and education would provide valuable material for strengthening the nexus between transformational learning and behaviour change theories. Future development of and research on the effectiveness of the CARING heuristic would be valuable in advancing the understanding of pedagogies which advance rather than impede learning as a transformative process. Exploring pedagogical models that marry with transformative education may render solutions to the vexing challenge of teaching and learning in diverse contexts.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Prediction of resting energy requirements in people taking weight-inducing antipsychotic medications