230 resultados para TF-DNA specificity
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
High-throughput screening of cytochrome P450CAM libraries, for their ability to oxidise indole to indigo and indirubin, has resulted in the identification of variants with activity towards the structurally unrelated substrate diphenylmethane.
Resumo:
The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.
Resumo:
This practice-led research project explores the possibilities for restaging and reconfiguring contemporary art installations in multiple and different locations. By exploring ideas and art that demonstrate a kaleidoscopic approach to creative practice, this project examines how analysing artists' particular processes can achieve new understandings and experiences of installation art. This project achieves this through reflection on, and analysis of creative works made throughout the research, and a critical examination of contemporary art practices.
Resumo:
To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.
Resumo:
The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Resumo:
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.
Resumo:
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/ E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.
Resumo:
Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.
Resumo:
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver:brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.