147 resultados para Surfactant flooding
Resumo:
In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.
Resumo:
The surfaces of natural beidellite were modified with cationic surfactant octadecyl trimethylammonium bromide at different concentrations. The organo-beidellite adsorbent materials were then used for the removal of atrazine with the goal of investigating the mechanism for the adsorption of organic triazine herbicide from contaminated water. Changes on the surfaces and structure of beidellite were characterised by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and BET surface analysis. Kinetics of the adsorption studies were also carried out which show that the adsorption capacity of the organoclays increases with increasing surfactant concentration up until 1.0 CEC surfactant loading, after which the adsorption capacity greatly decreases. TG analysis reveals that although the 2.0 CEC sample has the greatest percentage of surfactant by mass, most of it is present on external sites. The 0.5 CEC sample has the highest proportion of surfactant exchanged into the internal active sites and the 1.0 CEC sample accounts for the highest adsorption capacity. The goodness of fit of the pseudo-second order kinetic confirms that chemical adsorption, rather than physical adsorption, controls the adsorption rate of atrazine.
Resumo:
Communication and information diffusion are typically difficult in situations where centralised structures may become unavailable. In this context, decentralised communication based on epidemic broadcast becomes essential. It can be seen as an opportunity-based flooding for message broadcasting within a swarm of autonomous agents, where each entity tries to share the information it possesses with its neighbours. As an example of applications for such a system, we present simulation results where agents have to coordinate to map an unknown area.
Resumo:
The Australian water sector needs to adapt to effectively deal with the impacts of climate change on its systems. Challenges as a result of climate change include increasingly extreme occurrences of weather events including flooding and droughts (Pittock, 2011). In response to such challenges, the National Water Commission in Australia has identified the need for the water sector to transition towards being readily adaptable and able to respond to complex needs for a variety of supply and demand scenarios (National Water Commission, 2013). To successfully make this transition, the sector will need to move away from business as usual, and proactively pursue and adopt innovative approaches and technologies as a means to successfully address the impacts of climate change on the Australian water sector. In order to effectively respond to specific innovation challenges related to the sector, including climate change, it is first necessary to possess a foundational understanding about the key elements related to innovation in the sector. This paper presents this base level understanding, identifying the key barriers, drivers and enablers, and elements for innovative practise in the water sector. After initially inspecting the literature around the challenges stemming from climate change faced by the sector, the paper then examines the findings from the initial two rounds of a modified Delphi study, conducted with experts from the Australian water sector, including participants from research, government and industry backgrounds. The key barriers, drivers and enablers for innovation in the sector identified during the initial phase of the study formed the basis for the remainder of the investigation. Key elements investigated were: barriers – scepticism, regulation systems, inconsistent policy; drivers – influence of policy, resource scarcity, thought leadership; enablers – framing the problem, effective regulations, community acceptance. There is a convincing argument for the water sector transitioning to a more flexible, adaptive and responsive system in the face of challenges resulting from climate change. However, without first understanding the challenges and opportunities around making this transition, the likelihood of success is limited. For that reason, this paper takes the first step in understanding the elements surrounding innovation in the Australian water sector.
Resumo:
This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.
Resumo:
Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29Si MAS nuclear magnetic resonance spectra (29Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (SBET) and total pore volumes (Vp) of the products.
Resumo:
Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.
Resumo:
The surfaces of natural beidellite clay were modified with cationic surfactant, tetradecyltrimethylammonium bromide, at different concentrations. The organo-beidellites were analysed using thermogravimetric analysis which shows four thermal oxidation/decomposition steps. The first step of mass loss is observed from room temperature to 130 °C due to the dehydration of adsorbed water. The second step of mass loss between 130 and 400 °C is attributed to the oxidation step of the intercalated organic surfactant with the formation of charcoal. The third mass loss happens between 400 and 500 °C which is assigned to the loss of hydroxyl groups on the edge of clays and the further oxidation step of charcoal. The fourth step is ascribed to the loss of structural OH units as well as the final oxidation/decomposition step of charcoal which takes place between 500 and 700 °C. Thermogravimetric analysis has proven to be a useful tool for estimating loaded surfactant amount.
Resumo:
The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600cm-1and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388cm-1. This band was assigned to the second overtone of the first fundamental of CH stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2molL-1, anion exchange intercalation occurred and the interlayer distance expanded to about 3.25nm. When SDS concentration was 0.005molL-1, the surface adsorption of DS- was the major anion exchange event.
Resumo:
In the coming decades the design, construction and maintenance of roads will face a range of new issues and as such will require a number of new approaches. In particular, road authorities will be required to consider and respond to a range of issues related to climate change, and associated extreme weather events, such as the extensive flooding in January 2011 in Queensland, Australia Figure 1). Coupled with diminishing access to road construction supplies (such as aggregate), water scarcity, and the potential for increases in oil and electricity prices, this range of challenges bear little resemblance to those previously faced. In Australia, state and federal authorities face further pressures given the variety of needs resulting from the country's geographical and population diversity, expansive road networks, road freight requirements and relatively small population base.
Resumo:
This thesis assessed the mental health impacts of flooding and explored the key determinants of flood-related mental illness in the coastal region of Bangladesh. This study found significant increase in the prevalence of mental illness after flooding. Flood-exposure and socio-economic factors were significantly associated with post-flood mental illness. These findings may help the policy-makers to improve the early intervention and screening programs and may also have significant public health implications in the control and prevention of flood-related mental illness in Bangladesh.
Impacts of sodic soil amelioration on hydraulic conductivity and deep drainage in the Lower Burdekin
Resumo:
An understanding of the influence of soil chemistry on soil hydraulic properties is of critical importance for the management of sodic soils under irrigation. The hydraulic conductivity of sodic soils has been shown to be affected by properties of the applied solution including pH (Suarez et al. 1984), sodicity and salt concentration (McNeal and Coleman 1966). The changes in soil hydraulic conductivity are the result of changes in the spacing between clay layers in response to changes in soil solution chemistry. While the importance o f soil chemistry in controlling hydraulic conductivity is known, the exact impacts of sodic soil amelioration on hydraulic conductivity and deep drainage at a given location are difficult to predict. This is because the relationships between soil chemical factors and hydraulic conductivity are soil specific and because local site specific factors also need to be considered to determine the actual impacts on deep drainage rates.
Resumo:
The Bouncing Back research study, which began after the Queensland flooding in January 2011, has organically expanded through a number of architectural student design projects and exhibitions, which have sought to respond to catastrophic flooding events. In September 2011, 10 Queensland University of Technology architecture students travelled to Sydney to help construct a 1:1 true-to-life scale shelter, for the Emergency Shelter Exhibition at Customs House in Circular Quay. During the construction of the shelter, data were collected in situ, through dynamic interviews with the students. Using a grounded theory methodology, data were coded and then thematically analysed, to reveal three influential factors that positively impacted the students’ learning in this informal context. These were the student experience, the process of learning through physical making/fabrication, and development of empathy with the community. Analysis of these three factors demonstrated how this informal situated learning activity promoted vitally important learning in a real-world context, which is difficult to replicate in a physical on-campus environment.
Resumo:
The importance of developing effective disaster management strategies has significantly grown as the world continues to be confronted with unprecedented disastrous events. Factors such as climate instability, recent urbanization along with rapid population growth in many cities around the world have unwittingly exacerbated the risks of potential disasters, leaving a large number of people and infrastructure exposed to new forms of threats from natural disasters such as flooding, cyclones, and earthquakes. With disasters on the rise, effective recovery planning of the built environment is becoming imperative as it is not only closely related to the well-being and essential functioning of society, but it also requires significant financial commitment. In the built environment context, post-disaster reconstruction focuses essentially on the repair and reconstruction of physical infrastructures. The reconstruction and rehabilitation efforts are generally performed in the form of collaborative partnerships that involve multiple organisations, enabling the restoration of interdependencies that exist between infrastructure systems such as energy, water (including wastewater), transport, and telecommunication systems. These interdependencies are major determinants of vulnerabilities and risks encountered by critical infrastructures and therefore have significant implications for post-disaster recovery. When disrupted by natural disasters, such interdependencies have the potential to promote the propagation of failures between critical infrastructures at various levels, and thus can have dire consequences on reconstruction activities. This paper outlines the results of a pilot study on how elements of infrastructure interdependencies have the potential to impede the post-disaster recovery effort. Using a set of unstructured interview questionnaires, plausible arguments provided by seven respondents revealed that during post-disaster recovery, critical infrastructures are mutually dependent on each other’s uninterrupted availability, both physically and through a host of information and communication technologies. Major disruption to their physical and cyber interdependencies could lead to cascading failures, which could delay the recovery effort. Thus, the existing interrelationship between critical infrastructures requires that the entire interconnected network be considered when managing reconstruction activities during the post-disaster recovery period.
Resumo:
The flooding of urbanised areas constitutes a hazard to the population and infrastructure. Floods through inundated urban environments have been studied recently and the potential impact of flowing waters on pedestrians is not well known. Herein the stability of individuals in floodwaters is reviewed based upon the re-analysis of detailed field measurements in an inundated section of the central business district of the City of Brisbane (Australia) during the 2011 flood. Detailed water elevation and velocity data were recorded. On-site observations showed some hydrodynamic instability linked to local topographic effects, in the form of a combination of fast turbulent fluctuations and (very) slow fluctuations of water level and velocity associated with surges. The flow conditions in Gardens Point Road was unsafe for individuals and a review of past guidelines suggests that many previous recommendations are over-optimistic and unsafe in real floodwaters.