288 resultados para Statistical tools
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
Significant research has demonstrated direct and indirect associations between substance use and sexual behaviour. Substance use is related to sexual risk-taking and HIV seroconversion among some substance-using MSM. It remains unclear what factors mediate or underlie this relationship, and which substances are associated with greater harm. Substance-related expectancies are hypothesised as potential mechanisms. A conceptual model based on social-cognitive theory was tested, which explores the role of demographic factors, substance use, substance-related expectancies and novelty-seeking personality characteristics in predicting unprotected anal intercourse (UAI) while under the influence, across four commonly used substance types. Phase 1, a qualitative study (N = 20), explored how MSM perceive the effects of substance use on their thoughts, feelings and behaviours, including sexual behaviours. Information was attained through discussion and interviews, resulting in the establishment of key themes. Results indicated MSM experience a wide range of reinforcing aspects associated with substance use. General and specific effects were evident across substance types, and were associated with sexual behaviour and sexual risk-taking. Phase 2 consisted of developing a comprehensive profile of substance-related expectancies for MSM (SEP-MSM) regarding alcohol, cannabis, amyl nitrite and stimulants that possessed sound psychometric properties and was appropriate for use among this group. A cross-sectional questionnaire with 249 participants recruited through gay community networks was used to validate these measures, and involved online data collection, participants rating expectancy items and subsequent factor analysis. Results indicated expectancies can be reliably assessed, and predicted substance use patterns. Phase 3 examined demographic factors, substance use, substance-related expectancies, and novelty-seeking traits among another community sample of MSM (N = 277) throughout Australia, in predicting UAI while under the influence. Using a cross-sectional design, participants were recruited through gay community networks and completed online questionnaires. The SEP-MSM, and associated substance use, predicted UAI. This research extends social-cognitive theory regarding sexual behaviour, and advances understanding of the role of expectancies associated with substance use and sexual risk-taking. Future applications of the SEP-MSM in health promotion, prevention, clinical interventions and research are likely to contribute to reducing harm associated with substance-using MSM (e.g., HIV transmission).
Resumo:
Increasingly, studies are reported that examine how conceptual modeling is conducted in practice. Yet, typically the studies to date have examined in isolation how modeling grammars can be, or are, used to develop models of information systems or organizational processes, without considering that such modeling is typically done by means of a modeling tool that extends the modeling functionality offered by a grammar through complementary features. This paper extends the literature by examining how the use of seven different features of modeling tools affects usage beliefs users develop when using modeling grammars for process modeling. We show that five distinct tool features positively affect usefulness, ease of use and satisfaction beliefs of users. We offer a number of interpretations about the findings. We also describe how the results inform decisions of relevance to developers of modeling tools as well as managers in charge for making modeling-related investment decisions.
Resumo:
Much has been said and documented about the key role that reflection can play in the ongoing development of e-portfolios, particularly e-portfolios utilised for teaching and learning. A review of e-portfolio platforms reveals that a designated space for documenting and collating personal reflections is a typical design feature of both open source and commercial off-the-shelf software. Further investigation of tools within e-portfolio systems for facilitating reflection reveals that, apart from enabling personal journalism through blogs or other writing, scaffolding tools that encourage the actual process of reflection are under-developed. Investigation of a number of prominent e-portfolio projects also reveals that reflection, while presented as critically important, is often viewed as an activity that takes place after a learning activity or experience and not intrinsic to it. This paper assumes an alternative, richer conception of reflection: a process integral to a wide range of activities associated with learning, such as inquiry, communication, editing, analysis and evaluation. Such a conception is consistent with the literature associated with ‘communities of practice’, which is replete with insight into ‘learning through doing’, and with a ‘whole minded’ approach to inquiry. Thus, graduates who are ‘reflective practitioners’ who integrate reflection into their learning will have more to offer a prospective employer than graduates who have adopted an episodic approach to reflection. So, what kinds of tools might facilitate integrated reflection? This paper outlines a number of possibilities for consideration and development. Such tools do not have to be embedded within e-portfolio systems, although there are benefits in doing so. In order to inform future design of e-portfolio systems this paper presents a faceted model of knowledge creation that depicts an ‘ecology of knowing’ in which interaction with, and the production of, learning content is deepened through the construction of well-formed questions of that content. In particular, questions that are initiated by ‘why’ are explored because they are distinguished from the other ‘journalist’ questions (who, what, when, where, and where) in that answers to them demand explanative, as opposed to descriptive, content. They require a rationale. Although why questions do not belong to any one genre and are not simple to classify — responses can contain motivational, conditional, causal, and/or existential content — they do make a difference in the acquisition of understanding. The development of scaffolding that builds on why-questioning to enrich learning is the motivation behind the research that has informed this paper.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
Sound Thinking provides techniques and approaches to critically listen, think, talk and write about music you hear or make. It provides tips on making music and it encourages regular and deep thinking about music activities, which helps build a musical dialog that leads to deeper understanding.
Resumo:
In cross-organizational, distributed environments, Business Process Management requires collaborative technologies to facilitate the process of discovering, modeling, and improving business processes across geographical and organizational boundaries. This paper provides a comprehensive understanding of collaborative business process modeling that is based on a review of literature and a case study of three selected modelling tools. The application of the framework reveals that current process modeling tools consider different perspectives on collaboration, and that the included features are orthogonal. This paper informs practitioners about the state of the art in tool support for collaborative process modelling. It also informs vendors about opportunities to enhance the technology support. For research, our paper paper informs social aspects of BPM technology through its explicit focus on the collaboration of BPM stakeholders in the process of distributed modeling.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
Post-deployment maintenance and evolution can account for up to 75% of the cost of developing a software system. Software refactoring can reduce the costs associated with evolution by improving system quality. Although refactoring can yield benefits, the process includes potentially complex, error-prone, tedious and time-consuming tasks. It is these tasks that automated refactoring tools seek to address. However, although the refactoring process is well-defined, current refactoring tools do not support the full process. To develop better automated refactoring support, we have completed a usability study of software refactoring tools. In the study, we analysed the task of software refactoring using the ISO 9241-11 usability standard and Fitts' List of task allocation. Expanding on this analysis, we reviewed 11 collections of usability guidelines and combined these into a single list of 38 guidelines. From this list, we developed 81 usability requirements for refactoring tools. Using these requirements, the software refactoring tools Eclipse 3.2, Condenser 1.05, RefactorIT 2.5.1, and Eclipse 3.2 with the Simian UI 2.2.12 plugin were studied. Based on the analysis, we have selected a subset of the requirements that can be incorporated into a prototype refactoring tool intended to address the full refactoring process.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.
Resumo:
A wireless sensor network system must have the ability to tolerate harsh environmental conditions and reduce communication failures. In a typical outdoor situation, the presence of wind can introduce movement in the foliage. This motion of vegetation structures causes large and rapid signal fading in the communication link and must be accounted for when deploying a wireless sensor network system in such conditions. This thesis examines the fading characteristics experienced by wireless sensor nodes due to the effect of varying wind speed in a foliage obstructed transmission path. It presents extensive measurement campaigns at two locations with the approach of a typical wireless sensor networks configuration. The significance of this research lies in the varied approaches of its different experiments, involving a variety of vegetation types, scenarios and the use of different polarisations (vertical and horizontal). Non–line of sight (NLoS) scenario conditions investigate the wind effect based on different vegetation densities including that of the Acacia tree, Dogbane tree and tall grass. Whereas the line of sight (LoS) scenario investigates the effect of wind when the grass is swaying and affecting the ground-reflected component of the signal. Vegetation type and scenarios are envisaged to simulate real life working conditions of wireless sensor network systems in outdoor foliated environments. The results from the measurements are presented in statistical models involving first and second order statistics. We found that in most of the cases, the fading amplitude could be approximated by both Lognormal and Nakagami distribution, whose m parameter was found to depend on received power fluctuations. Lognormal distribution is known as the result of slow fading characteristics due to shadowing. This study concludes that fading caused by variations in received power due to wind in wireless sensor networks systems are found to be insignificant. There is no notable difference in Nakagami m values for low, calm, and windy wind speed categories. It is also shown in the second order analysis, the duration of the deep fades are very short, 0.1 second for 10 dB attenuation below RMS level for vertical polarization and 0.01 second for 10 dB attenuation below RMS level for horizontal polarization. Another key finding is that the received signal strength for horizontal polarisation demonstrates more than 3 dB better performances than the vertical polarisation for LoS and near LoS (thin vegetation) conditions and up to 10 dB better for denser vegetation conditions.
Resumo:
Purpose – The rapidly changing role of capital city airports has placed demands on surrounding infrastructure. The need for infrastructure management and coordination is increasing as airports and cities grow and share common infrastructure frameworks. The purpose of this paper is to document the changing context in Australia, where the privatisation of airports has stimulated considerable land development with resulting pressures on surrounding infrastructure provision. It aims to describe a tool that is being developed to support decision-making between various stakeholders in the airport region. The use of planning support systems improves both communication and data transfer between stakeholders and provides a foundation for complex decisions on infrastructure. Design/methodology/approach – The research uses a case study approach and focuses on Brisbane International Airport and Brisbane City Council. The research is primarily descriptive and provides an empirical assessment of the challenges of developing and implementing planning support systems as a tool for governance and decision-making. Findings – The research assesses the challenges in implementing a common data platform for stakeholders. Agency data platforms and models, traditional roles in infrastructure planning, and integrating similar data platforms all provide barriers to sharing a common language. The use of a decision support system has to be shared by all stakeholders with a common platform that can be versatile enough to support scenarios and changing conditions. The use of iPadss for scenario modelling provides stakeholders the opportunity to interact, compare scenarios and views, and react with the modellers to explore other options. Originality/value – The research confirms that planning support systems have to be accessible and interactive by their users. The Airport City concept is a new and evolving focus for airport development and will place continuing pressure on infrastructure servicing. A coordinated and efficient approach to infrastructure decision-making is critical, and an interactive planning support system that can model infrastructure scenarios provides a sound tool for governance.