134 resultados para Statistical thermodynamics.
Resumo:
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Resumo:
This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.
Resumo:
As statistical education becomes more firmly embedded in the school curriculum and its value across the curriculum is recognised, attention moves from knowing procedures, such as calculating a mean or drawing a graph, to understanding the purpose of a statistical investigation in decision making in many disciplines. As students learn to complete the stages of an investigation, the question of meaningful assessment of the process arises. This paper considers models for carrying out a statistical inquiry and, based on a four-phase model, creates a developmental squence that can be used for the assessment of outcomes from each of the four phases as well as for the complete inquiry. The developmental sequence is based on the SOLO model, focussing on the "observed" outcomes during the inquiry process.
Resumo:
This article examines a social media assignment used to teach and practice statistical literacy with over 400 students each semester in large-lecture traditional, fully online, and flipped sections of an introductory-level statistics course. Following the social media assignment, students completed a survey on how they approached the assignment. Drawing from the authors’ experiences with the project and the survey results, this article offers recommendations for developing social media assignments in large courses that focus on the interplay between the social media tool and the implications of assignment prompts.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider the development of statistical models for prediction of constituent concentration of riverine pollutants, which is a key step in load estimation from frequent flow rate data and less frequently collected concentration data. We consider how to capture the impacts of past flow patterns via the average discounted flow (ADF) which discounts the past flux based on the time lapsed - more recent fluxes are given more weight. However, the effectiveness of ADF depends critically on the choice of the discount factor which reflects the unknown environmental cumulating process of the concentration compounds. We propose to choose the discount factor by maximizing the adjusted R-2 values or the Nash-Sutcliffe model efficiency coefficient. The R2 values are also adjusted to take account of the number of parameters in the model fit. The resulting optimal discount factor can be interpreted as a measure of constituent exhaustion rate during flood events. To evaluate the performance of the proposed regression estimators, we examine two different sampling scenarios by resampling fortnightly and opportunistically from two real daily datasets, which come from two United States Geological Survey (USGS) gaging stations located in Des Plaines River and Illinois River basin. The generalized rating-curve approach produces biased estimates of the total sediment loads by -30% to 83%, whereas the new approaches produce relatively much lower biases, ranging from -24% to 35%. This substantial improvement in the estimates of the total load is due to the fact that predictability of concentration is greatly improved by the additional predictors.
Resumo:
Power calculation and sample size determination are critical in designing environmental monitoring programs. The traditional approach based on comparing the mean values may become statistically inappropriate and even invalid when substantial proportions of the response values are below the detection limits or censored because strong distributional assumptions have to be made on the censored observations when implementing the traditional procedures. In this paper, we propose a quantile methodology that is robust to outliers and can also handle data with a substantial proportion of below-detection-limit observations without the need of imputing the censored values. As a demonstration, we applied the methods to a nutrient monitoring project, which is a part of the Perth Long-Term Ocean Outlet Monitoring Program. In this example, the sample size required by our quantile methodology is, in fact, smaller than that by the traditional t-test, illustrating the merit of our method.
Resumo:
In this paper, we tackle the problem of unsupervised domain adaptation for classification. In the unsupervised scenario where no labeled samples from the target domain are provided, a popular approach consists in transforming the data such that the source and target distributions be- come similar. To compare the two distributions, existing approaches make use of the Maximum Mean Discrepancy (MMD). However, this does not exploit the fact that prob- ability distributions lie on a Riemannian manifold. Here, we propose to make better use of the structure of this man- ifold and rely on the distance on the manifold to compare the source and target distributions. In this framework, we introduce a sample selection method and a subspace-based method for unsupervised domain adaptation, and show that both these manifold-based techniques outperform the cor- responding approaches based on the MMD. Furthermore, we show that our subspace-based approach yields state-of- the-art results on a standard object recognition benchmark.
Resumo:
BACKGROUND OR CONTEXT Thermodynamics is a core concept for mechanical engineers yet notoriously difficult. Evidence suggests students struggle to understand and apply the core fundamental concepts of thermodynamics with analysis indicating a problem with student learning/engagement. A contributing factor is that thermodynamics is a ‘science involving concepts based on experiments’ (Mayhew 1990) with subject matter that cannot be completely defined a priori. To succeed, students must engage in a deep-holistic approach while taking ownership of their learning. The difficulty in achieving this often manifests itself in students ‘not getting’ the principles and declaring thermodynamics ‘hard’. PURPOSE OR GOAL Traditionally, students practice and “learn” the application of thermodynamics in their tutorials, however these do not consider prior conceptions (Holman & Pilling 2004). As ‘hands on’ learning is the desired outcome of tutorials it is pertinent to study methods of improving their efficacy. Within the Australian context, the format of thermodynamics tutorials has remained relatively unchanged over the decades, relying anecdotally on a primarily didactic pedagogical approach. Such approaches are not conducive to deep learning (Ramsden 2003) with students often disengaged from the learning process. Evidence suggests (Haglund & Jeppsson 2012), however, that a deeper level and ownership of learning can be achieved using a more constructivist approach for example through self generated analogies. This pilot study aimed to collect data to support the hypothesis that the ‘difficulty’ of thermodynamics is associated with the pedagogical approach of tutorials rather than actual difficulty in subject content or deficiency in students. APPROACH Successful application of thermodynamic principles requires solid knowledge of the core concepts. Typically, tutorial sessions guide students in this application. However, a lack of deep and comprehensive understanding can lead to student confusion in the applications resulting in the learning of the ‘process’ of application without understanding ‘why’. The aim of this study was to gain empirical data on student learning of both concepts and application, within thermodynamic tutorials. The approach taken for data collection and analysis was: - 1 Four concurrent tutorial streams were timetabled to examine student engagement/learning in traditional ‘didactic’ (3 weeks) and non-traditional (3 weeks). In each week, two of the selected four sessions were traditional and two non-traditional. This provided a control group for each week. - 2 The non-traditional tutorials involved activities designed to promote student-centered deep learning. Specific pedagogies employed were: self-generated analogies, constructivist, peer-to-peer learning, inquiry based learning, ownership of learning and active learning. - 3 After a three-week period, teaching styles of the selected groups was switched, to allow each group to experience both approaches with the same tutor. This also acted to mimimise any influence of tutor personality / style on the data. - 4 At the conclusion of the trial participants completed a ‘5 minute essay’ on how they liked the sessions, a small questionnaire, modelled on the modified (Christo & Hoang, 2013)SPQ designed by Biggs (1987) and a small formative quiz to gauge the level of learning achieved. DISCUSSION Preliminary results indicate that overall students respond positively to in class demonstrations (inquiry based learning), and active learning activities. Within the active learning exercises, the current data suggests students preferred individual rather than group or peer-to-peer activities. Preliminary results from the open-ended questions such as “What did you like most/least about this tutorial” and “do you have other comments on how this tutorial could better facilitate your learning”, however, indicated polarising views on the nontraditional tutorial. Some student’s responded that they really like the format and emphasis on understanding the concepts, while others were very vocal that that ‘hated’ the style and just wanted the solutions to be presented by the tutor. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Preliminary results indicated a mixed, but overall positive response by students with more collaborative tutorials employing tasks promoting inquiry based, peer-to-peer, active, and ownership of learning activities. Preliminary results from student feedback supports evidence that students learn differently, and running tutorials focusing on only one pedagogical approached (typically didactic) may not be beneficial to all students. Further, preliminary data suggests that the learning / teaching style of both students and tutor are important to promoting deep learning in students. Data collection is still ongoing and scheduled for completion at the end of First Semester (Australian academic calendar). The final paper will examine in more detail the results and analysis of this project.
Resumo:
We followed by X-ray Photoelectron Spectroscopy (XPS) the time evolution of graphene layers obtained by annealing 3C SiC(111)/Si(111) crystals at different temperatures. The intensity of the carbon signal provides a quantification of the graphene thickness as a function of the annealing time, which follows a power law with exponent 0.5. We show that a kinetic model, based on a bottom-up growth mechanism, provides a full explanation to the evolution of the graphene thickness as a function of time, allowing to calculate the effective activation energy of the process and the energy barriers, in excellent agreement with previous theoretical results. Our study provides a complete and exhaustive picture of Si diffusion into the SiC matrix, establishing the conditions for a perfect control of the graphene growth by Si sublimation.
Resumo:
The past decade has brought a proliferation of statistical genetic (linkage) analysis techniques, incorporating new methodology and/or improvement of existing methodology in gene mapping, specifically targeted towards the localization of genes underlying complex disorders. Most of these techniques have been implemented in user-friendly programs and made freely available to the genetics community. Although certain packages may be more 'popular' than others, a common question asked by genetic researchers is 'which program is best for me?'. To help researchers answer this question, the following software review aims to summarize the main advantages and disadvantages of the popular GENEHUNTER package.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
"We thank MrGilder for his considered comments and suggestions for alternative analyses of our data. We also appreciate Mr Gilder’s support of our call for larger studies to contribute to the evidence base for preoperative loading with high-carbohydrate fluids..."
Resumo:
Water quality data are often collected at different sites over time to improve water quality management. Water quality data usually exhibit the following characteristics: non-normal distribution, presence of outliers, missing values, values below detection limits (censored), and serial dependence. It is essential to apply appropriate statistical methodology when analyzing water quality data to draw valid conclusions and hence provide useful advice in water management. In this chapter, we will provide and demonstrate various statistical tools for analyzing such water quality data, and will also introduce how to use a statistical software R to analyze water quality data by various statistical methods. A dataset collected from the Susquehanna River Basin will be used to demonstrate various statistical methods provided in this chapter. The dataset can be downloaded from website http://www.srbc.net/programs/CBP/nutrientprogram.htm.