183 resultados para Statistical Mechanics
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
This thesis explored the knowledge and reasoning of young children in solving novel statistical problems, and the influence of problem context and design on their solutions. It found that young children's statistical competencies are underestimated, and that problem design and context facilitated children's application of a wide range of knowledge and reasoning skills, none of which had been taught. A qualitative design-based research method, informed by the Models and Modeling perspective (Lesh & Doerr, 2003) underpinned the study. Data modelling activities incorporating picture story books were used to contextualise the problems. Children applied real-world understanding to problem solving, including attribute identification, categorisation and classification skills. Intuitive and metarepresentational knowledge together with inductive and probabilistic reasoning was used to make sense of data, and beginning awareness of statistical variation and informal inference was visible.
Resumo:
This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...
Resumo:
Statistical methodology was applied to a survey of time-course incidence of four viruses (alfalfa mosaic virus, clover yellow vein virus, subterranean clover mottle virus and subterranean clover red leaf virus) in improved pastures in southern regions of Australia. -from Authors
Resumo:
The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.
Resumo:
The Department of Culture and the Arts undertook the first mapping of Perth’s creative industries in 2007 in partnership with the City of Perth and the Departments of Industry and Resources and the Premier and Cabinet. The 2013 Creative Industries Statistical Analysis for Western Australia report has updated the mapping with the 2011 Census employment data to provide invaluable information for the State’s creative industries, their peak associations and potential investors. The report maps sector employment numbers and growth between the 2006 and 2011 Census in the areas of music, visual and performing arts, film, TV and radio, advertising and marketing, software and digital content, publishing, and architecture and design, which includes designer fashion.
Resumo:
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.
Resumo:
For clinical use, in electrocardiogram (ECG) signal analysis it is important to detect not only the centre of the P wave, the QRS complex and the T wave, but also the time intervals, such as the ST segment. Much research focused entirely on qrs complex detection, via methods such as wavelet transforms, spline fitting and neural networks. However, drawbacks include the false classification of a severe noise spike as a QRS complex, possibly requiring manual editing, or the omission of information contained in other regions of the ECG signal. While some attempts were made to develop algorithms to detect additional signal characteristics, such as P and T waves, the reported success rates are subject to change from person-to-person and beat-to-beat. To address this variability we propose the use of Markov-chain Monte Carlo statistical modelling to extract the key features of an ECG signal and we report on a feasibility study to investigate the utility of the approach. The modelling approach is examined with reference to a realistic computer generated ECG signal, where details such as wave morphology and noise levels are variable.
Resumo:
This chapter addresses data modelling as a means of promoting statistical literacy in the early grades. Consideration is first given to the importance of increasing young children’s exposure to statistical reasoning experiences and how data modelling can be a rich means of doing so. Selected components of data modelling are then reviewed, followed by a report on some findings from the third-year of a three-year longitudinal study across grades one through three.
Resumo:
At NDSS 2012, Yan et al. analyzed the security of several challenge-response type user authentication protocols against passive observers, and proposed a generic counting based statistical attack to recover the secret of some counting based protocols given a number of observed authentication sessions. Roughly speaking, the attack is based on the fact that secret (pass) objects appear in challenges with a different probability from non-secret (decoy) objects when the responses are taken into account. Although they mentioned that a protocol susceptible to this attack should minimize this difference, they did not give details as to how this can be achieved barring a few suggestions. In this paper, we attempt to fill this gap by generalizing the attack with a much more comprehensive theoretical analysis. Our treatment is more quantitative which enables us to describe a method to theoretically estimate a lower bound on the number of sessions a protocol can be safely used against the attack. Our results include 1) two proposed fixes to make counting protocols practically safe against the attack at the cost of usability, 2) the observation that the attack can be used on non-counting based protocols too as long as challenge generation is contrived, 3) and two main design principles for user authentication protocols which can be considered as extensions of the principles from Yan et al. This detailed theoretical treatment can be used as a guideline during the design of counting based protocols to determine their susceptibility to this attack. The Foxtail protocol, one of the protocols analyzed by Yan et al., is used as a representative to illustrate our theoretical and experimental results.
Resumo:
A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
The mechanical properties of microfilament networks are systematically summarized at different special scales in this paper. We have presented the mechanical models of single microfilaments and microfilament networks at microscale. By adopting a coarse-grained simulation strategy, the mechanical stability of microfilaments related cellular structures are analysed. Structural analysis is conducted to microfilament networks to understand the stress relaxation under compression. The nanoscale molecular mechanisms of the microfilaments deformation is also summarized from the viewpoint of molecular dynamics simulation. This paper provides the fundaments of multiscale modelling framework for the mechanical behaviours simulation of hierarchical microfilament networks.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.