182 resultados para Sortase A inhibitors
Resumo:
Lung cancer is the commonest cause of cancer death in the western world. Recent evidence suggests that angiogenesis is related to poor prognosis in many solid tumours including non-small cell lung cancer. Angiogenesis is controlled by a complex interaction between growth and apoptotic factors, proteases and adhesion molecules. The angiogenic process may prove a target for novel therapies such as matrix metalloproteinase inhibitors, growth factor antisense RNA, growth factor receptor antagonists and naturally occurring antiangiogenic peptides. These agents may be used alone or in combination with traditional chemotherapy, radiotherapy and surgery. (C) 2000 Elsevier Science Ireland Ltd.
Resumo:
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.
Resumo:
Background: A recent study by Dhillon et al. [12], identified both angioinvasion and mTOR as prognostic biomarkers for poor survival in early stage NSCLC. The aim of this study was to verify the above study by examining the angioinvasion and mTOR expression profile in a cohort of early stage NSCLC patients and correlate the results to patient clinico-pathological data and survival. Methods: Angioinvasion was routinely recorded by the pathologist at the initial assessment of the tumor following resection. mTOR was evaluated in 141 early stage (IA-IIB) NSCLC patients (67 - squamous; 60 - adenocarcinoma; 14 - others) using immunohistochemistry (IHC) analysis with an immunohistochemical score (IHS) calculated (% positive cells × staining intensity). Intensity was scored as follows: 0 (negative); 1+ (weak); 2+ (moderate); 3+ (strong). The range of scores was 0-300. Based on the previous study a cut-off score of 30 was used to define positive versus negative patients. The impact of angioinvasion and mTOR expression on prognosis was then evaluated. Results: 101 of the 141 tumors studied expressed mTOR. There was no difference in mTOR expression between squamous cell carcinoma and adenocarcinoma. Angioinvasion (p= 0.024) and mTOR staining (p= 0.048) were significant univariate predictors of poor survival. Both remained significant after multivariate analysis (p= 0.037 and p= 0.020, respectively). Conclusions: Our findings verify angioinvasion and mTOR expression as new biomarkers for poor outcome in patients with early stage NSCLC. mTOR expressing patients may benefit from novel therapies targeting the mTOR survival pathway. © 2011 Elsevier Ireland Ltd.
Resumo:
The majority of patients with non-small-cell lung cancer (NSCLC) present with advanced disease, with targeted therapies providing some improvement in clinical outcomes. The epidermal growth factor receptor (EGFR) tyrosine kinase (TK) plays an important role in the pathogenesis of NSCLC. Tyrosine kinase inhibitors (TKIs), which target the EGFR TK domain, have proven to be an effective treatment strategy; however, patient responses to treatment vary considerably. Therefore, the identification of patients most likely to respond to treatment is essential to optimise the benefit of TKIs. Tumour-associated activating mutations in EGFR can identify patients with NSCLC who are likely to have a good response to TKIs. Nonetheless, the majority of patients relapse within a year of starting treatment. Studies of tumours at relapse have demonstrated expression of a T790M mutation in exon 20 of the EGFR TK domain in approximately 50% of cases. Although conferring resistance to reversible TKIs, these patients may remain sensitive to new-generation irreversible/panerb inhibitors. A number of techniques have been employed for genotypic assessment of tumourassociated DNA to identify EGFR mutations, each of which has advantages and disadvantages. This review presents an overview of the current methodologies used to identify such molecular markers. Recent developments in technology may make the monitoring of changes in patients' tumour genotypes easier in clinical practice, which may enable patients' treatment regimens to be tailored during the course of their disease, potentially leading to improved patient outcomes.
Resumo:
Background: Cyclooxygenase (COX)-2 is frequently overexpressed in non-small cell lung cancer (NSCLC) and results in increased levels of prostaglandin E2 (PGE 2), an important signalling molecule implicated in tumourigenesis. PGE 2 exerts its effects through the E prostanoid (EP) receptors (EPs1-4). Methods: The expression and epigenetic regulation of the EPs were evaluated in a series of resected fresh frozen NSCLC tumours and cell lines. Results: EP expression was dysregulated in NSCLC being up and downregulated compared to matched control samples. For EPs1, 3 and 4 no discernible pattern emerged. EP2 mRNA however was frequently downregulated, with low levels being observed in 13/20 samples as compared to upregulation in 5/20 samples examined. In NSCLC cell lines DNA CpG methylation was found to be important for the regulation of EP3 expression, the demethylating agent decitabine upregulating expression. Histone acetylation was also found to be a critical regulator of EP expression, with the histone deacteylase inhibitors trichostatin A, phenylbutyrate and suberoylanilide hydroxamic acid inducing increased expression of EPs2-4. Direct chromatin remodelling was demonstrated at the promoters for EPs2-4. Conclusions: These results indicate that EP expression is variably altered from tumour to tumour in NSCLC. EP2 expression appears to be predominantly downregulated and may have an important role in the pathogenesis of the disease. Epigenetic regulation of the EPs may be central to the precise role COX-2 may play in the evolution of individual tumours. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
Reactive oxygen species (ROS) form as a natural by-product of the normal metabolism of oxygen and play important roles within the cell. Under normal circumstances the cell is able to maintain an adequate homeostasis between the formation of ROS and its removal through particular enzymatic pathways or via antioxidants. If however, this balance is disturbed a situation called oxidative stress occurs. Critically, oxidative stress plays important roles in the pathogenesis of many diseases, including cancer. Epigenetics is a process where gene expression is regulated by heritable mechanisms that do not cause any direct changes to the DNA sequence itself, and disruption of epigenetic mechanisms has important implications in disease. Evidence is emerging that histone deacetylases (HDACs) play decisive roles in regulating important cellular oxidative stress pathways including those involved with sensing oxidative stress and those involved with regulating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by HDACs may play critical roles in cancer progression. In this review we discuss the current evidence linking epigenetics and oxidative stress and cancer, using chronic obstructive pulmonary disease and non-small cell lung cancer to illustrate the importance of epigenetics on these pathways within these disease settings. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Resumo:
Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Recent studies have demonstrated that angiogenesis and suppressed cell- mediated immunity (CMI) play a central role in the pathogenesis of malignant disease facilitating tumour growth, invasion and metastasis. In the majority of tumours, the malignant process is preceded by a pathological condition or exposure to an irritant which itself is associated with the induction of angiogenesis and/or suppressed CMI. These include: cigarette smoking, chronic bronchitis and lung cancer; chronic oesophagitis and oesophageal cancer; chronic viral infections such as human papilloma virus and ano-genital cancers, chronic hepatitis B and C and hepatocellular carcinoma, and Epstein- Barr virus (EBV) and lymphomas; chronic inflammatory conditions such as Crohn's disease and ulcerative colitis and colorectal cancer; asbestos exposure and mesothelioma and excessive sunlight exposure/sunburn and malignant melanoma. Chronic exposure to growth factors (insulin-like growth factor-I in acromegaly), mutations in tumour suppressor genes (TP53 in Li Fraumeni syndrome) and long-term exposure to immunosuppressive agents (cyclosporin A) may also give rise to similar environments and are associated with the development of a range of solid tumours. The increased blood supply would facilitate the development and proliferation of an abnormal clone or clones of cells arising as the result of: (a) an inherited genetic abnormality; and/or (b) acquired somatic mutations, the latter due to local production and/or enhanced delivery of carcinogens and mutagenic growth factors. With progressive detrimental mutations and growth-induced tumour hypoxia, the transformed cell, to a lesser or greater extent, may amplify the angiogenic process and CMI suppression, thereby facilitating further tumour growth and metastasis. There is accumulating evidence that long-term treatment with cyclo-oxygenase inhibitors (aspirin and indomethacin), cytokines such as interferon-α, anti-oestrogens (tamoxifen and raloxifene) and captopril significantly reduces the incidence of solid tumours such as breast and colorectal cancer. These agents are anti-angiogenic and, in the case of aspirin, indomethacin and interferon-α have proven immunomodulatory effects. Collectively these observations indicate that angiogenesis and suppressed CMI play a central role in the development and progression of malignant disease. (C) 2000 Elsevier Science Ltd.
Resumo:
Background: Hydroxyurea (HU), an inhibitor of ribonucleotide reductase, may potentiate the activity of 5-fluorouracil (5-FU) and folinic acid (FA) by reducing the deoxyribonucleotide pool available for DNA synthesis and repair. However as HU may inhibit the formation of 5-fluoro-2-deoxyuridine-5- monophosphate (FdUMP), one of the principal active metabolites of 5-FU, the scheduling of HU may be critical. In vitro experiments suggest that administration of HU following 5-FU, maintaining the concentration in the region of I mM for six or more hours, significantly enhances the efficacy of 5-FU. Patients and methods: 5-FU/FA was given as follows: days 1 and 2 - FA 250 mg/m 2 (max. 350 mg) over two hours followed by 5-FU 400 mg/m 2 by intravenous bolus (ivb) over 15 minutes and subsequently 5-FU 400 mg/m 2 infusion (ivi) over 22 hours. HU was administered on day 3 immediately after the 5-FU with 3 g ivb over 15 minutes followed by 12 g ivi over 12 hours. Results: Thirty patients were entered into the study. Median survival was nine months (range 1-51 + months). There were eight partial responses (28%, 95% CI: 13%-47%). The median duration of response was 6.5 (range 4-9 months). Grade 3-4 toxicities included neutropenia (grade 3 in eight patients and grade 4 in five), anaemia (grade 3 in one patient) and diarrhoea (grade 3 in two patients). Neutropenia was associated with pyrexia in two patients. Phlebitis at the infusion site occurred in five patients. The treatment was complicated by pulmonary embolism in one patient and deep venous thrombosis in another. Conclusion: HU administered in this schedule is well tolerated. Based on these results and those of other phase II studies, a randomised phase III study of 5-FU, FA and HU versus 5-FU and FA using the standard de Gramont schedule is recommended.