222 resultados para Secondary Science Education


Relevância:

90.00% 90.00%

Publicador:

Resumo:

As indicated in a previous Teaching Science article, effective planning for curricula integration requires using standards from two (or more) subject areas (e.g., science and English, science and art or science and mathematics), which also becomes the assessment foci for teaching and learning. Curricula integration of standards into an activity necessitates pedagogical knowledge for developing students’ learning in both subject areas. For science education, the skills and tools for curricula integration include the use of other key learning areas (KLAs). A balance between teacher and student-centred science education programs that draw on democratic processes (e.g., Beane, 1997) can be used to make real-world links to target students’ individual needs. This article presents practical ways to commence thinking about curricula integration towards using Australian curriculum standards.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The content for the school science curriculum has always been an interplay or contest between the interests of a number of stakeholders, who have an interest in establishing it at a new level of schooling or in changing its current form. For most of its history, the interplay was dominated by the interests of academic scientists, but in the 1980s the needs of both future scientists and future citizens began to be more evenly balanced as science educators promoted a wider sense of science. The contest changed again in the 1990s with a super-ordinate control being exerted by government bureaucrats at the expense of the subject experts. This change coincides with the rise in a number of countries of a market view of education, and of science education in particular, accompanied by demands for public accountability via simplistic auditing measures. This shift from expertise to bureaucratise and its consequences for the quality of science education is illustrated with five case studies of science curriculum reform in Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Higher-order thinking has featured persistently in the reform agenda for science education. The intended curriculum in various countries sets out aspirational statements for the levels of higher-order thinking to be attained by students. This study reports the extent to which chemistry examinations from four Australian states align and facilitate the intended higher-order thinking skills stipulated in curriculum documents. Through content analysis, the curriculum goals were identified for each state and compared to the nature of question items in the corresponding examinations. Categories of higher-order thinking were adapted from the OECD’s PISA Science test to analyze question items. There was considerable variation in the extent to which the examinations from the states supported the curriculum intent of developing and assessing higher-order thinking. Generally, examinations that used a marks-based system tended to emphasize lower-order thinking, with a greater distribution of marks allocated for lower-order thinking questions. Examinations associated with a criterion-referenced examination tended to award greater credit for higher-order thinking questions. The level of complexity of chemistry was another factor that limited the extent to which examination questions supported higher-order thinking. Implications from these findings are drawn for the authorities responsible for designing curriculum and assessment procedures and for teachers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Through the use of critical discourse analysis, this thesis investigated the perceived importance of scientific literacy in the new Australian Curriculum: Science. It was found that scientific literacy was ambiguous, and that the document did not provide detailed scope for intentional teaching for scientific literacy. To overcome this, recommendations on how to intentionally teach for scientific literacy were provided, so that Australian Science teachers can focus on improving scientific literacy outcomes for all students within this new curriculum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many primary teachers and preservice teachers experience a fear of science that translates into a fear of teaching science. Consequently, primary students may not receive a full science education curriculum, particularly as the teaching of science is avoided by many primary teachers, as shown in an Australian report by Goodrum, Hackling and Rennie ( 2001 ). Preservice teachers need to develop confi dence to teach primary science, by understanding what science is, knowing how to plan and assess science learning, and teaching science skills and knowledge in ways that engage students in science education.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study explored the interactions of a highly motivated group of students doing traditional practical work in science. Interest focussed on the social construction of understanding and how this could be described. Despite considerable collaboration in constructing an understanding of the task the students rarely focussed on the concepts the practical work was intended to illustrate. Collaboration was described in terms of social behaviours and discourse moves which supported the use of cognitive strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the theoretical framework of threshold concepts and its potential for LIS education. Threshold concepts are key ideas, often troublesome and counter-intuitive, that are critical to profound understanding of a domain. Once understood, they allow mastery of significant aspects of the domain, opening up new, previously inaccessible ways of thinking. The paper is developed in three parts. First, threshold concept theory is introduced and studies of its use in higher education are described, including emergent work related to LIS. Second, results of a recent study on learning experiences integral to learning to search are presented along with their implications for search expertise and search education, forming a case illustration of what threshold concept theory may contribute to this and other areas of LIS education. Third, the potential of threshold concept theory for LIS education is discussed. The paper concludes that threshold concept theory has much to offer LIS education, particularly for researching critical concepts and competencies, and considerations for a research agenda are put forth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intentions of the science curriculum are very often constrained by the forms of student learning that are required by, or are currently available within, the system of education. Furthermore, little attention is given to developing new approaches to assessment that would encourage these good intentions. In this chapter, we argue that achieving this broadening of the intentions of science education will require a diversity of assessment techniques and that only a profile of each student’s achievement will capture the range of intended learnings. We explore a variety of assessment modes that match some of these new aspects of science learning and that also provide students with both formative information and a more comprehensive and authentic summative profile of their performances. Our discussion is illustrated with research-based examples of assessment practice in relation to three aspects of science education that are increasingly referred to in curriculum statements as desirable human dimensions of science: context-based science education, decision-making processes and socioscientific issues and integrated science education. We conclude with some notes on what these broader kinds of assessment mean for teachers and the support they would need to include them in their day-to-day practices in the science classrooms if, and when, the mainstream of science teaching and learning takes these curricular intentions seriously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter profiles research that has explored the role of affect in the teaching of science in Australia particularly on primary or elementary science education. Affect is a complex set of characteristics that relate to the interactions between an individual’s knowledge and emotional responses to a stimulus. Thus, there are many dimensions and theoretical frameworks that inform our understanding of how and why people behave in particular ways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy value model of achievement-related choices. In addition it draws on sociological theories of late-modernity and identity, which situate decision-making in a cultural context. The article examines how these frameworks are useful in explaining the decisions of young people – and young women in particular – about participating in STEM and proposes possible strategies for removing barriers to participation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on the achievement and retention of female students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of females in some science, technology, engineering and mathematics (STEM) courses. The Interests and Recruitment in Science (IRIS) project is an international project that aims to contribute to understanding and improving recruitment, retention and gender equity in STEM higher education. Nearly 3500 first year students in 30 Australian universities responded to the IRIS survey of 5-point Likert items and open responses. This paper explores gender differences in first year university students’ responses to three questions about important influences on their course choice. The IRIS study found good teachers were rated highly by both males and females as influential in choosing STEM courses, and significantly higher numbers of females rated personal encouragement from senior high school science teacher as very important. In suggestions for addressing sex disparities in male-dominated STEM courses, more females indicated the importance of good teaching/encouragement and more females said (unspecified) encouragement. This study relates to the influence of school science teachers and results are discussed in relation to implications for science education.