133 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cause of upper-crustal segmentation into rhomb-shaped, shear zone-bound domains associated with contractional sedimentary basins in hot, wide orogens is not well understood. Here we use scaled multilayered analogue experiments to investigate the role of an orogen-parallel crustal-strength gradient on the formation of such structures. We show that the aspect ratio and size of domains, the sinuous character and abundance of transpressional shear zones vary with the integrated mechanical strength of crust. Upper-crustal deformation patterns and the degree of strain localization in the experiments are controlled by the ratio between the brittle and ductile strength in the model crust as well as gradients in tectonic and buoyancy forces. The experimental results match the first-order kinematic and structural characteristics of the southern Central Andes and provide insight on the dynamics of underlying deformation patterns in hot, wide orogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformation toughening ceramics (TTCs) are engineering materials which combine ceramic properties such as hardness, corrosion resistance and low thermal conductivity with good toughness and mechanical strength. At elevated temperatures their use is limited due to destabilisation of the transformation toughening microstructure (partially stabilised zirconia or PSZ) or creep and hydrothermal degradation (tetragonal zirconia polycrystals or TZPs). Despite these limitations, the use of TTCs, particularly zirconia based, has become widespread. To date, most commercial TTCs are based on combinations of zirconia and one stabilising oxide. This work investigates a zirconia ceramic containing two stabilisers, namely yttria and titania in roughly equal proportions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteocytes, known to act as the main regulators of bone homeostasis, have become a major focus in the field of bone research. Bioactive ceramics have been widely used for bone regeneration. However, there are few studies about the interaction of osteocytes with bioceramics. The effects of osteocytes on the in vitro and in vivo osteogenesis of bioceramics are also unclear. The aim of this study was to investigate the role of osteocytes on the b-tricalcium phosphate (b-TCP) stimulated osteogenesis. It was found that osteocytes responded to the b-TCP stimulation, leading to the release of Wnt (wingless-related MMTV integration site), which enhanced osteogenic differentiation of bone marrow stromal cells via Wnt signaling pathway. Receptor activator of nuclear factor kappa B ligand, an osteoclast inducer, was also upregulated, indicating that osteocytes would also participated in activation of osteoclasts, which played a major role in the degradation process of b-TCP and new bone remodeling. In vivo studies further demonstrated that when the material was completely embedded by newly formed bone, the only cell contacting with the material was osteocyte. However, the material would eventually be degraded and replaced by the new bone, requiring the participation of osteoclasts and osteoblasts, which were demonstrated by using immunostaining in this study. As the only cell contacting with the material, osteocytes probably acted in a regulatory role to regulate the surrounding osteoclasts and osteoblasts. Osteocytes were also found to participate in the maturation of osteoblasts and the mineralization process of biomaterials, by upregulating E11 (podoplanin) and dentin matrix protein 1 expression. These findings indicated that osteocytes involved in bone biomaterial-mediated osteogenesis and biomaterial degradation, providing valuable insights into the mechanism of material-stimulated osteogenesis, and a novel strategy to optimize the evaluating system for the biological properties of biomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One limitation of electrospinning stems from the charge build-up that occurs during processing, preventing further fibre deposition and limiting the scaffold overall thickness and hence their end-use in tissue engineering applications targeting large tissue defect repair. To overcome this, we have developed a technique in which thermally induced phase separation (TIPS) and electrospinning are combined. Thick three-dimensional, multilayered composite scaffolds were produced by simply stacking individual polycaprolactone (PCL) microfibrous electrospun discs into a cylindrical holder that was filled with a 3% poly(lactic-co-glycolic acid) (PLGA) solution in dimethylsulfoxide (a good solvent for PLGA but a poor one for PCL). The construct was quenched in liquid nitrogen and the solvent removed by leaching out in cold water. This technique enables the fabrication of scaffolds composed principally of electrospun membranes that have no limit to their thickness. The mechanical properties of these scaffolds were assessed under both quasi-static and dynamic conditions. The multilayered composite scaffolds had similar compressive properties to 5% PCL scaffolds fabricated solely by the TIPS methodology. However, tensile tests demonstrated that the multilayered construct outperformed a scaffold made purely by TIPS, highlighting the contribution of the electrospun component of the composite scaffold to enhancing the overall mechanical property slate. Cell studies revealed cell infiltration principally from the scaffold edges under static seeding conditions. This fabrication methodology permits the rapid construction of thick, strong scaffolds from a range of biodegradable polymers often used in tissue engineering, and will be particularly useful when large dimension electrospun scaffolds are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteocytes are the mature cells and perform as mechanosensors within the bone. The mechanical property of osteocytes plays an important role to fulfill these functions. However, little researches have been done to investigate the mechanical deformation properties of single osteocytes. Atomic Force Microscopy (AFM) is a state-of-art experimental facility for high resolution imaging of tissues, cells and any surfaces as well as for probing mechanical properties of the samples both qualitatively and quantitatively. In this paper, the experimental study based on AFM is firstly used to obtain forceindentation curves of single round osteocytes. The porohyperelastic (PHE) model of a single osteocyte is then developed by using the inverse finite element analysis (FEA) to identify and extract mechanical properties from the experiment results. It has been found that the PHE model is a good candidature for biomechanics studies of osteocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present the morphological and magnetic characterization of ferrofluid-impregnated biomimetic scaffolds made of hydroxyapatite and collagen used for bone reconstruction. We describe an innovative and simple impregnation process by which the ferrofluid is firmly adsorbed onto the hydroxyapatite/collagen scaffolds. The process confers sufficient magnetization to attract potential magnetic carriers, which may be used to transport bioactive agents that favour bone regeneration. The crystalline structure of the magnetite contained in the ferrofluid is preserved and its quantity, estimated from the weight gain due to the impregnation process, is consistent with that obtained from energy dispersive X-ray spectroscopy. The magnetization, measured with a superconducting quantum interference device, is uniform throughout the scaffolds, demonstrating the efficiency of the impregnation process. The field emission gun scanning electron microscopy characterization demonstrates that the process does not alter the morphology of the hydroxyapatite/collagen scaffolds, which is essential for the preservation of their bioactivity and consequently for their effectiveness in promoting bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100 nm), ordered mesoporous channels (∼2 nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. Statement of significance In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors in mesoporous silica nanosphere provides new options for bioactive nanomaterial functionalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amongst various methods to attain sound antibacterial and antifouling properties, surface modification of biomaterials combines efficiency, processing flexibility, and most importantly, the ability to preserve favourable bulk properties, such as mechanical strength and chemical inertness. This chapter will first briefly discuss key parameters by which the biomaterial surface can be described, namely surface chemistry and morphology, and their individual and combined contributions to cell-surface interactions. More emphasis will be placed on surface morphology as the area of much debate. The chapter will then describe a range of available methodologies for surface modification, with plasma-assisted modification as one of the foci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oriented, single-crystalline, one-dimensional (1D) TiO2 nanostructures would be most desirable for providing fascinating properties and features, such as high electron mobility or quantum confinement effects, high specific surface area, and even high mechanical strength, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a concept for precisely controlling the morphology of 1D TiO2 nanostructures by tuning the hydrolysis rate of titanium precursors is proposed. Based on this innovation, oriented 1D rutile TiO2 nanostructure arrays with continually adjustable morphologies, from nanorods (NRODs) to nanoribbons (NRIBs), and then nanowires (NWs), as well as the transient state morphologies, were successfully synthesized. The proposed method is a significant finding in terms of controlling the morphology of the 1D TiO2 nano-architectures, which leads to significant changes in their band structures. It is worth noting that the synthesized rutile NRIBs and NWs have a comparable bandgap and conduction band edge height to those of the anatase phase, which in turn enhances their photochemical activity. In photovoltaic performance tests, the photoanode constructed from the oriented NRIB arrays possesses not only a high surface area for sufficient dye loading and better light scattering in the visible light range than for the other morphologies, but also a wider bandgap and higher conduction band edge, with more than 200% improvement in power conversion efficiency in dye-sensitized solar cells (DSCs) compared with NROD morphology.