145 resultados para SURGICAL REMOVAL
Resumo:
PURPOSE - To present the results of same-day topography-guided photorefractive keratectomy (TG-PRK) and corneal collagen cross-linking (CXL) after intrastromal corneal ring (ISCR) implantation in patients with keratoconus. METHODS - Thirty-three patients (41 eyes) aged between 19 and 45 years were included in this prospective study. All patients underwent a femtosecond laser-enabled (Intralase FS; Abbott Medical Optics, Inc.) placement of intracorneal ring segments (Kerarings; Mediphacos, Brazil). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and keratometry readings remained stable for 6 months. Same-day PRK and CXL was subsequently performed in all patients. RESULTS - After 12 months of completion of the procedure, mean UDVA in log of minimal angle of resolution was significantly improved (0.74±0.54-0.10±0.16); CDVA did not improve significantly but 85% of eyes maintained or gained multiple lines of CDVA; mean refraction spherical equivalent improved (from -3.03±1.98 to -0.04±0.99 D), all keratometry readings were significantly reduced, from preoperative values, but coma did not vary significantly from preoperative values. Central corneal thickness and corneal thickness at the thinnest point were significantly (P<0.0001) reduced from 519.76±29.33 and 501.87±31.50 preoperatively to 464.71±36.79 and 436.55±47.42 postoperatively, respectively. Safety and efficacy indices were 0.97 and 0.88, respectively. From 6 months up until more than 1 year of follow-up, further significant improvement was observed only for UDVA (P<0.0001). CONCLUSIONS - Same-day combined TG-PRK and CXL after ISCR implantation is a safe and effective option for improving visual acuity and visual function, and it halts the progression of the keratoconus. The improvements recorded after 6 months of follow-up were maintained or improved upon 1 year after the procedure.
Resumo:
This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.
Resumo:
Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.
Resumo:
A modified inorganic bentonite (Na/Al) based on purified Ca-bentonite was prepared through exchanging Al and Na ions in the interlayer space of Ca-bentonite. The structural properties of purified and modified bentonites were characterized by XRD and SEM analysis. Batch experiments were performed for the adsorption of ammonium nitrogen and different experimental conditions were studied in order to investigate the optimum adsorption conditions. Comparative experiments were also carried out for natural Ca-bentonite (RB), unmodified purified bentonite (PB) and modified purified bentonite (MB). Through the thermodynamic analysis, the ammonium nitrogen adsorption process can be spontaneous, the standard heat was −41.46kJmol −1 , and the adsorption process based on ion exchange adsorption. The ammonium nitrogen adsorption capacity of MB (46.904mg/g) was improved compared to raw bentonite (RB) (26.631mg/g), which was among the highest values of ammonium nitrogen adsorption compared with other adsorbents according to the literatures. The described process provides a potential pathway for the removal of ammonium nitrogen at low concentrations encountered in most natural waters.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.
Resumo:
Background Surgical site infections (SSIs) are wound infections that occur after invasive (surgical) procedures. Preoperative bathing or showering with an antiseptic skin wash product is a well-accepted procedure for reducing skin bacteria (microflora). It is less clear whether reducing skin microflora leads to a lower incidence of surgical site infection. Objectives To review the evidence for preoperative bathing or showering with antiseptics for preventing hospital-acquired (nosocomial) surgical site infections. Search methods For this fifth update we searched the Cochrane Wounds Group Specialised Register (searched 18 December 2014); the Cochrane Central Register of Controlled Trials (The Cochrane Library 2014 Issue 11); Ovid MEDLINE (2012 to December Week 4 2014), Ovid MEDLINE (In-Process & Other Non-Indexed Citations December 18, 2014); Ovid EMBASE (2012 to 2014 Week 51), EBSCO CINAHL (2012 to December 18 2014) and reference lists of articles. Selection criteria Randomised controlled trials comparing any antiseptic preparation used for preoperative full-body bathing or showering with non-antiseptic preparations in people undergoing surgery. Data collection and analysis Two review authors independently assessed studies for selection, risk of bias and extracted data. Study authors were contacted for additional information. Main results We did not identify any new trials for inclusion in this fifth update. Seven trials involving a total of 10,157 participants were included. Four of the included trials had three comparison groups. The antiseptic used in all trials was 4% chlorhexidine gluconate (Hibiscrub/Riohex). Three trials involving 7791 participants compared chlorhexidine with a placebo. Bathing with chlorhexidine compared with placebo did not result in a statistically significant reduction in SSIs; the relative risk of SSI (RR) was 0.91 (95% confidence interval (CI) 0.80 to 1.04). When only trials of high quality were included in this comparison, the RR of SSI was 0.95 (95%CI 0.82 to 1.10). Three trials of 1443 participants compared bar soap with chlorhexidine; when combined there was no difference in the risk of SSIs (RR 1.02, 95% CI 0.57 to 1.84). Three trials of 1192 patients compared bathing with chlorhexidine with no washing, one large study found a statistically significant difference in favour of bathing with chlorhexidine (RR 0.36, 95%CI 0.17 to 0.79). The smaller studies found no difference between patients who washed with chlorhexidine and those who did not wash preoperatively. Authors' conclusions This review provides no clear evidence of benefit for preoperative showering or bathing with chlorhexidine over other wash products, to reduce surgical site infection. Efforts to reduce the incidence of nosocomial surgical site infection should focus on interventions where effect has been demonstrated.
Resumo:
"Using the nursing process as a framework for practice, the fourth edition has been extensively revised to reflect the rapid changing nature of nursing practice and the increasing focus on key nursing care priorities. Building on the strengths of the third Australian and New Zealand edition and incorporating relevant global nursing research and practice from the prominent US title Medical-Surgical Nursing, 9Th Edition, Lewis’s Medical-Surgical Nursing, 4th Edition is an essential resource for students seeking to understand the role of the professional nurse in the contemporary health environment."--Publisher website
Resumo:
A 60-year-old male experienced a marked unilateral myopic shift of 20 D following attempted removal of intravitreal heavy silicone oil (HSO) used in the treatment of inferior proliferative vitreous retinopathy following retinal detachment. Examination revealed HSO adherent to the corneal endothelium forming a convex interface with the aqueous, obscuring the entire pupil, which required surgical intervention to restore visual acuity. This case highlights the potential ocular complications associated with silicone oil migration into the anterior chamber, which include corneal endothelial decompensation and a significant increase in myopia.
Resumo:
BACKGROUND After general surgery, the lower limb experiences some of the highest complication rates. However, little is known about contributing factors to surgical site failure in the lower limb dermatological surgery population. OBJECTIVE To determine the incidence of lower limb surgical site failure and to explore the predictors that contribute to surgical site failure. METHODS A prospective observational study design was used to collect data from 73 participants, from July 2010, to March 2012. Incidence was determined as a percentage of surgical site failure from the total population. Predictors were determined by the use of a binary logistic regression model. RESULTS The surgical site failure rate was 53.4%. Split-skin grafting had a higher failure rate than primary closures, 66% versus 26.1%. Predictors of lower limb surgical site failure were identified as increasing age (p = .04) and the presence of postoperative hematoma (p = .01), with all patients who developed surgical site infection experiencing surgical site failure (p = .01). CONCLUSION Findings from this study confirmed that the lower limb is at high risk of surgical site failure. Two predictors of surgical site failure from this cohort were determined. However, to understand this phenomenon and make recommendations to assist and reduce surgical site complications, further research in this field is required.
Resumo:
On 13 November, WikiLeaks released a secret draft text of the Intellectual Property Chapter of the Trans-Pacific Partnership (TPP). The text reveals substantive proposals for expanded protection in respect of copyright, patent, trade mark and trade secrets law, and intellectual property enforcement.
Resumo:
Introduction. Rett Syndrome is a rare genetic neurodevelopmental disorder usually affecting females. Scoliosis is a common comorbidity and spinal fusion may be recommended if severe. Little is known about long term outcomes. We examined the impact of spinal fusion on survival and risk of severe lower respiratory tract infection (LRTI) in Rett Syndrome. Methods Data were ascertained from hospital medical records, the Australian Rett Syndrome Database, a longitudinal and population-based registry of Rett Syndrome cases established in 1993, and the Australian Institute of Health and Welfare National Death Index database. An extended Cox regression model was used to estimate the effect of spinal surgery on survival in females who developed severe scoliosis (Cobb angle > 45 degrees). Generalized estimating equation modelling was used to estimate the effect of spinal surgery on the odds of developing severe LRTI. Results Severe scoliosis was identified in 140 cases (60.3%) of whom slightly fewer than half (48.6%) developed scoliosis prior to eight years of age. Scoliosis surgery was performed in 98 (69.0%) of those at a median age of 13 years 3 months (IQR 11 years 5 months – 14 years 10 months). After adjusting for mutation type and age of scoliosis onset, the rate of death was lower in the surgery group (HR 0.30, 95% CI 0.12, 0.74, P = 0.009) compared to those without surgery. Rate of death was particularly reduced for those with early onset scoliosis (HR 0.17, 95% CI 0.06, 0.52, P = 0.002). Spinal fusion was not associated with reduction in the occurrence of a severe LRTI overall (OR 0.60, 95%CI 0.27, 1.33, P=0.206) but was associated with a large reduction in odds of severe LRTI among those with early onset scoliosis (OR 0.32, 95%CI 0.11, 0.93, P=0.036). Conclusion With appropriate cautions, spinal fusion confers an advantage to life expectancy in Rett syndrome.
Resumo:
INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. Our novel patient specific modelling software creates individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We have recently applied the model to investigate the influence of increasing magnitudes of surgically applied corrective force on predicted deformity correction...
Resumo:
Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.
Resumo:
Two rainfall simulations of 30 mm h-1, with 48-h interval between two simulations, were performed on rice lysimeters at 24, 48, and 72 h after being sprayed with tricyclazole. In the first simulated rainfall, wash-off concentration of tricyclazole was significant irrespective of the interval between the spray time and the rainfall simulation. And from 20.5% to 24.2% of tricyclazole deposited on leaves was removed from the rice foliage. In the second simulated rainfall, concentration of tricyclazole in wash-off water was significantly lower and less than 3.6% of the deposited tricyclazole was lost. © 2008 Springer Science+Business Media, LLC.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.