133 resultados para SSA CALORIMETRIC TECHNIQUE
Resumo:
Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.
Resumo:
Law is narration: it is narrative, narrator and the narrated. As a narrative, the law is constituted by a constellation of texts – from official sources such as statutes, treaties and cases, to private arrangements such as commercial contracts, deeds and parenting plans. All are a collection of stories: cases are narrative contests of facts and rights; statutes are recitations of the substantive and procedural bases for social, economic and political interactions; private agreements are plots for future relationships, whether personal or professional. As a narrator, law speaks in the language of modern liberalism. It describes its world in abstractions rather than in concrete experience, universal principles rather than individual subjectivity. It casts people into ‘parties’ to legal relationships; structures human interactions into ‘issues’ or ‘problems’; and tells individual stories within larger narrative arcs such as ‘the rule of law’ and ‘the interests of justice’. As the narrated, the law is a character in its own story. The scholarship of law, for example, is a type of story-telling with law as its central character. For positivists, still the dominant group in the legal genre, law is a closed system of formal rules with an “immanent rationality” and its own “structure, substantive content, procedure and tradition,” dedicated to finality of judgment. For scholars inspired by the interpretative tradition in the humanities, law is a more ambivalent character, susceptible to influences from outside its realm and masking a hidden ideological agenda under its cloak of universality and neutrality. For social scientists, law is a protagonist on a wider social stage, impacting on society, the economy and the polity is often surprising ways.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
A new technique called the reef resource inventory (RRI) was developed to map the distribution and abundance of benthos and substratum on reefs. The rapid field sampling technique uses divers to visually estimate the percentage cover of categories of benthos and substratum along 2x20 in plotless strip-transects positioned randomly over the tops, and systematically along the edge of reefs. The purpose of this study was to compare the relative sampling accuracy of the RRI against the line intercept transect technique (LIT), an international standard for sampling reef benthos and substratum. Analysis of paired sampling with LIT and RRI at 51 sites indicated sampling accuracy was not different (P > 0.05) for 8 of the 12 benthos and substratum categories used in the study. Significant differences were attributed to small-scale patchiness and cryptic coloration of some benthos; effects associated with sampling a sparsely distributed animal along a line versus an area; difficulties in discriminating some of the benthos and substratum categories; and differences due to visual acuity since LIT measurements were taken by divers close to the seabed whereas RRI measurements were taken by divers higher in the water column. The relative cost efficiency of the RRI technique was at least three times that of LIT for all benthos and substratum categories and as much as 10 times higher for two categories. These results suggest that the RRI can be used to obtain reliable and accurate estimates of relative abundance of broad categories of reef benthos and substratum.
Resumo:
The integration of technology in care is core business in nursing and this role requires that we must understand and use technology informed by evidence that goes much deeper and broader than actions and behaviours. We need to delve more deeply into its complexity because there is nothing minor or insignificant about technology as a major influence in healthcare outcomes and experiences. Evidence is needed that addresses technology and nursing from perspectives that examine the effects of technology, especially related to increasing demands for efficiency, the relationship of technology to nursing and caring, and a range of philosophical questions associated with empowering people in their healthcare choices. Specifically, there is a need to confront in practice the ways technique influences care. Technique is the creation of a kind of thinking that is necessary for contemporary healthcare technology to develop and be applied in an efficient and rational manner. Technique is not an entity or specific thing, but rather a way of thinking that seeks to shape and organize nursing activity, and manage efficiently individual difference(s) in care. It emphasizes predetermined causal relationships, conformity, and sameness of product, process, and thought. In response is needed a radical vision of nursing that attempts in a real sense to ensure we meet the needs of individuals and their community. Activism and advocacy are needed, and a willingness to create a certain detachment from the imperatives that technique demands. It is argued that our responsibility as nurses is to respond in practice to the errors, advantages, difficulties, and temptations of technology for the benefit of those who most need our assistance and care.
Resumo:
Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants with adverse impacts on aquatic biota, wildlife and human health even at low concentrations. However, conventional methods for their determination in river sediments are resource intensive. This paper presents an approach that is rapid and also reliable for the detection of OCPs. Accelerated Solvent Extraction (ASE) with in-cell silica gel clean-up followed by Triple Quadrupole Gas Chromatograph Mass Spectrometry (GCMS/MS) was used to recover OCPs from sediment samples. Variables such as temperature, solvent ratio, adsorbent mass and extraction cycle were evaluated and optimised for the extraction. With the exception of Aldrin, which was unaffected by any of the variables evaluated, the recovery of OCPs from sediment samples was largely influenced by solvent ratio and adsorbent mass and, to some extent, the number of cycles and temperature. The optimised conditions for OCPs extraction in sediment with good recoveries were determined to be 4 cycles, 4.5 g of silica gel, 105 ᴼC, and 4:3 v/v DCM: hexane mixture. With the exception of two compounds (α-BHC and Aldrin) whose recoveries were low (59.73 and 47.66 % respectively), the recovery of the other pesticides were in the range 85.35 – 117.97% with precision < 10 % RSD. The method developed significantly reduces sample preparation time, the amount of solvent used, matrix interference, and is highly sensitive and selective.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.