149 resultados para Resin composite
Resumo:
Zinc-rich ethyl silicate coatings are quite successful in protecting steel against corrosion under severe exposing conditions. In spite of providing excellent cathodic protection to steel structure after film curing, two-component zinc-rich ethyl silicate coatings have some limitations, one of which is inadequate shelf life as a result of in-can binder gelation. In this work, the preparation steps of ethyl silicate such as pre-hydrolysis, dehydration and organometallic reactions were surveyed and herein an approach towards understanding the cause and effect relationship of the use of ingredients is presented. The effects of water and catalytic acid dosages on gel time under accelerated conditions and the effect of alcoholic solvent order on the rate of the hydrolysis and dehydration reactions were studied via Karl-Fischer test determining the water content of hydrolysate. A thriving optimization in shelf life without any loss in physical–mechanical characteristics of the final film (e.g. hardness, adhesion, solvent and salt spray resistance) was obtained.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.
Resumo:
The exchange of iron species from iron (III) chloride solutions with a strong acid cation resin has been investigated in relation to a variety of water and wastewater applications. A detailed equilibrium isotherm analysis was conducted wherein models such as Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov, Sips and Brouers-Sotolongo were applied to the experimental data. An important conclusion was that both the bottle-point method and solution normality used to generate the ion exchange equilibrium information influenced which sorption model fitted the isotherm profiles optimally. Invariably, the calculated value for the maximum loading of iron on strong acid cation resin was substantially higher than the value of 47.1 g/kg of resin which would occur if one Fe3+ ion exchanged for three “H+” sites on the resin surface. Consequently, it was suggested that above pH 1, various iron complexes sorbed to the resin in a manner which required less than 3 sites per iron moiety. Column trials suggested that the iron loading was 86.6 g/kg of resin when 1342 mg/L Fe (III) ions in water were flowed at 31.7 bed volumes per hour. Regeneration with 5 to 10 % HCl solutions reclaimed approximately 90 % of exchange sites.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Optimum position of steel outrigger system for high rise composite buildings subjected to wind loads
Resumo:
The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.
Resumo:
The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.
Resumo:
In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.
Resumo:
Tight networks of interwoven carbon nanotube bundles are formed in our highly conductive composite. The composite possesses propertiessuggesting a two-dimensional percolative network rather than other reported dispersions displaying three-dimensional networks. Binding nanotubes into large but tight bundles dramatically alters the morphology and electronic transport dynamics of the composite. This enables itto carry higher levels of charge in the macroscale leading to conductivities as high as 1600 S/cm. We now discuss in further detail, the electronic and physical properties of the nanotube composites through Raman spectroscopy and transmission electron microscopy analysis. When controlled and usedappropriately, the interesting properties of these composites reveal their potential for practical device applications. For instance, we used this composite to fabricate coatings, whic improve the properties of an electromagnetic antenna/amplifier transducer. The resulting transducer possesses a broadband range up to GHz frequencies. A strain gauge transducer was also fabricated using changes in conductivity to monitor structural deformations in the composite coatings.