215 resultados para Project 2005-033-C : Business Drivers for BIM
Resumo:
This is the final report of research project 2002-057-C: Enabling Team Collaboration with Pervasive and Mobile Computing. The research project was carried out by the Australian Cooperative Research Centre for Construction Innovation and has two streams that consider the use of pervasive computing technologies in two different contexts. The first context was the on-site deployment of mobile computing devices, where as the second context was the use and development of intelligent rooms based on sensed environments and new human-computer interfaces (HCI) for collaboration in the design office. The two streams present a model of team collaboration that relies on continues communication to people and information to reduce information leakage. This report consists of five sections: (1) Introduction; (2) Research Project Background; (3) Project Implementation; (4) Case Studies and Outcomes; and (5) Conclusion and Recommendation. Introduction in Section 1 presents a brief description of the research project including general research objectives and structure. Section 2 introduces the background of the research and detailed information regarding project participants, objectives and significance, and also research methodology. Review of all research activities such as literature review and case studies are summarised in Project Implementation in Section 3. Following this, in Section 4 the report then focuses on analysing the case studies and presents their outcomes. Conclusion and recommendation of the research project are summarised in Section 5. Other information to support the content of the report such as research project schedule is provided in Appendices. The purpose of the final project report is to provide industry partners with detailed information on the project activities and methodology such as the implementation of pervasive computing technologies in the real contexts. The report summarises the outcomes of the case studies and provides necessary recommendation to industry partners of using new technologies to support better project collaboration.
Resumo:
The application of Information and Communication Technology (ICT) in construction industry has been recognised widely by some practitioners and researchers for the last several years. During the 1990s the international construction industry started using with the increasing confidence information and communication technology. The use of e-mail became usual and web-sites were established for marketing purposes. Intranets and extranets were also established to facilitate communication within companies and throughout their branches. One of the important applications of the ICT in construction industry was the use of mobile computing devices to achieve better communication and data transmission between construction sites and offices.
Final : report assessing risk and variation in maintenance and rehabilitation costs for road network
Resumo:
This report presents the results of research projects conducted by The Australian Cooperative Research Centre for Construction Innovation, Queensland University of Technology, RMIT University, Queensland Government Department of Main Roads and Queensland Department of Public Works. The research projects aimed at developing a methodology for assessing variation and risk in investment in road network, including the application of the method in assessing road network performance and maintenance and rehabilitation costs for short- and long-term future investment.
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
The decision as to which procurement system to adopt is a complex and challenging task for clients of construction projects. Despite a plethora of tools and techniques available for selecting a procurement method, clients are still uncertain about what method to adopt for a given construction project to achieve success. This paper examines how and why procurement methods are selected by public sector clients in Queensland (QLD) and Western Australia (WA). Findings from workshops with senior managers in procurement selection revealed that traditional lump sum methods (TLS) are preferred even though alternative forms could be better suited for a given project. Participants of the workshops agreed that alternative procurement forms should be considered for projects but an embedded culture of uncertainty avoidance meant the selection of TLS methods. It was perceived that only a limited number of contractors operating in the marketplace have the resources and experience to deliver projects using the non-traditional methods.
Resumo:
The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from realtime case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.
Resumo:
n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented
Resumo:
The resources listed in this document describe the design and construction opportunities available to building owners who wish to re-Life their properties. They do not yet examine management opportunities, which may also help owners improve the efficiency of their existing stock.
Resumo:
A need for an efficient life care management of building portfolio is becoming increasingly due to increase in aging building infrastructure globally. Appropriate structural engineering practices along with facility management can assist in optimising the remaining life cycle costs for existing public building portfolio. A more precise decision to either demolish, refurbish, do nothing or rebuilt option for any typical building under investigation is needed. In order to achieve this, the status of health of the building needs to be assessed considering several aspects including economic and supply-demand considerations. An investment decision for a refurbishment project competing with other capital works and/or refurbishment projects can be supported by emerging methodology residual service life assessment. This paper discusses challenges in refurbishment projects of public buildings and with a view towards development of residual service life assessment methodology
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the remaining service life of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building faade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
In recent years considerable effort has gone into quantifying the reuse and recycling potential of waste generated by residential construction. Unfortunately less information is available for the commercial refurbishment sector. It is hypothesised that significant economic and environmental benefit can be derived from closer monitoring of the commercial construction waste stream. With the aim of assessing these benefits, the authors are involved in ongoing case studies to record both current standard practice and the most effective means of improving the eco-efficiency of materials use in office building refurbishments. This paper focuses on the issues involved in developing methods for obtaining the necessary information on better waste management practices and establishing benchmark indicators. The need to create databases to establish benchmarks of waste minimisation best practice in commercial construction is stressed. Further research will monitor the delivery of case study projects and the levels of reuse and recycling achieved in directly quantifiable ways