123 resultados para Pharmaceutical chemistry
Resumo:
A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.
Resumo:
The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.
Resumo:
This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.