498 resultados para PARTITIONING ENERGY PROVISION
Resumo:
This paper presents the method and results of a survey of 27 of the 33 Australian universities teaching engineering education in late 2007, undertaken by The Natural Edge Project (hosted by Griffith University and the Australian National University) and supported by the National Framework for Energy Efficiency. This survey aimed to ascertain the extent of energy efficiency (EE) education, and to identify preferred methods to assist in increasing the extent to which EE education is embedded in engineering curriculum. In this paper the context for the survey is supported by a summary of the key results from a variety of surveys undertaken over the last decade internationally. The paper concludes that EE education across universities and engineering disciplines in Australia is currently highly variable and ad hoc. Based on the results of the survey, this paper highlights a number of preferred options to support educators to embed sustainability within engineering programs, and future opportunities for monitoring EE, within the context of engineering education for sustainable development (EESD).
Resumo:
Objective: To compare the location and accessibility of current Australian chronic heart failure (CHF) management programs and general practice services with the probable distribution of the population with CHF. Design and setting: Data on the prevalence and distribution of the CHF population throughout Australia, and the locations of CHF management programs and general practice services from 1 January 2004 to 31 December 2005 were analysed using geographic information systems (GIS) technology. Outcome measures: Distance of populations with CHF to CHF management programs and general practice services. Results: The highest prevalence of CHF (20.3–79.8 per 1000 population) occurred in areas with high concentrations of people over 65 years of age and in areas with higher proportions of Indigenous people. Five thousand CHF patients (8%) discharged from hospital in 2004–2005 were managed in one of the 62 identified CHF management programs. There were no CHF management programs in the Northern Territory or Tasmania. Only four CHF management programs were located outside major cities, with a total case load of 80 patients (0.7%). The mean distance from any Australian population centre to the nearest CHF management program was 332 km (median, 163 km; range, 0.15–3246 km). In rural areas, where the burden of CHF management falls upon general practitioners, the mean distance to general practice services was 37 km (median, 20 km; range, 0–656 km). Conclusion: There is an inequity in the provision of CHF management programs to rural Australians.
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.
Resumo:
This study is motivated by the need to look continually for ways to improve Griffith University's learning assistance services so that they meet the changed needs of stakeholders and are at the same time cost-effective and efficient. This study uses the conceptual tools of cultural-historical activity theory and expansive visibilisation to investigaate the developmenet and transformation of learning assistance services at Griffith University, one of Australia's largest mult-campus universities.
Resumo:
Individuals, community organisations and industry have always been involved to varying degrees in efforts to address the Queensland road toll. Traditionally, road crash prevention efforts have been led by state and local government organisations. While community and industry groups have sometimes become involved (e.g. Driver Reviver campaign), their efforts have largely been uncoordinated and under-resourced. A common strength of these initiatives lies in the energy, enthusiasm and persistence of community-based efforts. Conversely, a weakness has sometimes been the lack of knowledge, awareness or prioritisation of evidence-based interventions or their capacity to build on collaborative efforts. In 2000, the Queensland University of Technology’s Centre for Accident Research and Road Safety – Queensland (CARRS-Q) identified this issue as an opportunity to bridge practice and research and began acknowledging a selection of these initiatives, in partnership with the RACQ, through the Queensland Road Safety Awards program. After nine years it became apparent there was need to strengthen this connection, with the Centre establishing a Community Engagement Workshop in 2009 as part of the overall Awards program. With an aim of providing community participants opportunities to see, hear and discuss the experiences of others, this event was further developed in 2010, and with the collaboration of the Queensland Department of Transport and Main Roads, the RACQ, Queensland Police Service and Leighton Contractors Pty Ltd, a stand-alone Queensland Road Safety Awards Community Engagement Workshop was held in 2010. Each collaborating organisation recognised a need to mobilise the community through effective information and knowledge sharing, and recognised that learning and discussion can influence lasting behaviour change and action in this often emotive, yet not always evidence-based, area. This free event featured a number of speakers representing successful projects from around Australia and overseas. Attendees were encouraged to interact with the speakers, to ask questions, and most importantly, build connections with other attendees to build a ‘community road safety army’ all working throughout Australia on projects underpinned by evaluated research. The workshop facilitated the integration of research, policy and grass-roots action enhancing the success of community road safety initiatives. For collaboration partners, the event enabled them to transfer their knowledge in an engaged approach, working within a more personal communication process. An analysis of the success factors for this event identified openness to community groups and individuals, relevance of content to local initiatives, generous support with the provision of online materials and ongoing communication with key staff members as critical and supports the view that the university can directly provide both the leadership and the research needed for effective and credible community-based initiatives to address injury and death on the roads.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.
Resumo:
The Australian Government is about to release Australia’s first sustainable population policy. Sustainable population growth, among other things, implies sustainable energy demand. Current modelling of future energy demand both in Australia and by agencies such as the International Energy Agency sees population growth as one of the key drivers of energy demand. Simply increasing the demand for energy in response to population policy is sustainable only if there is a radical restructuring of the energy system away from energy sources associated with environmental degradation towards one more reliant on renewable fuels and less reliant on fossil fuels. Energy policy can also address the present nexus between energy consumption per person and population growth through an aggressive energy efficiency policy. The paper considers the link between population policies and energy policies and considers how the overall goal of sustainability can be achieved. The methods applied in this analysis draw on the literature of sustainable development to develop elements of an energy planning framework to support a sustainable population policy. Rather than simply accept that energy demand is a function of population increase moderated by an assumed rate of energy efficiency improvement, the focus is on considering what rate of energy efficiency improvement is necessary to significantly reduce the standard connections between population growth and growth in energy demand and what policies are necessary to achieve this situation. Energy efficiency policies can only moderate unsustainable aspects of energy demand and other policies are essential to restructure existing energy systems into on-going sustainable forms. Policies to achieve these objectives are considered. This analysis shows that energy policy, population policy and sustainable development policies are closely integrated. Present policy and planning agencies do not reflect this integration and energy and population policies in Australia have largely developed independently and whether the outcome is sustainable is largely a matter of chance. A genuinely sustainable population policy recognises the inter-dependence between population and energy policies and it is essential that this is reflected in integrated policy and planning agencies
Resumo:
The Australian Government is about to release Australia’s first sustainable population policy. Sustainable population growth, among other things, implies sustainable energy demand. Current modelling of future energy demand both in Australia and by agencies such as the International Energy Agency sees population growth as one of the key drivers of energy demand. Simply increasing the demand for energy in response to population policy is sustainable only if there is a radical restructuring of the energy system away from energy sources associated with environmental degradation towards one more reliant on renewable fuels and less reliant on fossil fuels. Energy policy can also address the present nexus between energy consumption per person and population growth through an aggressive energy efficiency policy. The paper considers the link between population policies and energy policies and considers how the overall goal of sustainability can be achieved. The methods applied in this analysis draw on the literature of sustainable development to develop elements of an energy planning framework to support a sustainable population policy. Rather than simply accept that energy demand is a function of population increase moderated by an assumed rate of energy efficiency improvement, the focus is on considering what rate of energy efficiency improvement is necessary to significantly reduce the standard connections between population growth and growth in energy demand and what policies are necessary to achieve this situation. Energy efficiency policies can only moderate unsustainable aspects of energy demand and other policies are essential to restructure existing energy systems into on-going sustainable forms. Policies to achieve these objectives are considered. This analysis shows that energy policy, population policy and sustainable development policies are closely integrated. Present policy and planning agencies do not reflect this integration and energy and population policies in Australia have largely developed independently and whether the outcome is sustainable is largely a matter of chance. A genuinely sustainable population policy recognises the inter-dependence between population and energy policies and it is essential that this is reflected in integrated policy and planning agencies