402 resultados para Order-preserving Functions
Resumo:
Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.
Resumo:
In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.
Resumo:
This paper considers the functions of Greek mythology in general and the “Theseus and the Minotaur” myth in particular in two contemporary texts of adolescent masculinity: Rick Riordan’s Percy Jackson series (2005-2009) and Matt Ottley’s Requiem for a Beast: A Work for Image, Word and Music (2007). These texts reveal the ongoing flexibility of mythic texts to be pressed into service of shoring up or challenging currently hegemonic ideologies of self and state. Both Riordan and Ottley make a variety of intertextual uses of classical hero plots in order to facilitate their own narrative explorations of contemporary adolescent men ‘coming of age’. These intertextual gestures might easily be read as gestures of alignment with narrative traditions and authority which simultaneously confer “legitimacy” on Riordan and Ottley, on their texts, and by extension, on their readers. However, when read in juxtaposition, it is clear that Riordan and Ottley may use classical mythology to articulate similarly gendered adolescence, they produce divergent visions of nationed adolescence.
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.