140 resultados para NANOCOMPOSITE SPHERES
Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains
Resumo:
Thermal transport in graphene-polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene-polymer nanocomposite. In this work, we investigated the thermal transport across graphene-polymer interfaces functionalized with end-grafted polymer chains using molecular dynamics simulations. The effects of grafting density, chain length and initial morphology on the interfacial thermal transport were systematically investigated. It was found that end-grafted polymer chains could significantly enhance interfacial thermal transport and the underlying mechanism was considered to be the enhanced vibration coupling between graphene and polymer. In addition, a theoretical model based on effective medium theory was established to predict the thermal conductivity in graphene-polymer nanocomposites.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
In Australia, for more than two decades, a ‘social science’ integrated framework was the favoured approach for delivering subjects such as history and geography. However, such interdisciplinary approaches have continued to attract criticism from various parts of the academic and public spheres and since 2009, a return to teaching the disciplines has been heralded as the ‘new’ way forward. Using discourse analysis techniques associated with Foucauldian archaeology, the purpose of this paper is to examine the Australian Curriculum: Geography document to ascertain the discourses necessary for pre-service teachers to enact effective teaching of geography in a primary setting. Then, based on pre-service teachers’ online survey responses, the paper investigates if such future teachers have the knowledge and skills to interpret, deliver and enact the new geography curriculum in primary classrooms. Finally, as teacher educators, our interest lies in preparing pre-service teachers effectively for the classroom so the findings are used to inform the content of a teacher education course for pre-service primary teachers.
Resumo:
Tensions surrounding social media in the employment relationship are increasingly evident in the media, public rhetoric, and courts and employment tribunals. Yet the underlying causes and dimensions of these tensions have remained largely unexplored. This article firstly reviews the available literature addressing social media and employment, outlining three primary sources of contestation: profiling, disparaging posts and blogs, and private use of social media during work time. In each area, the key dynamics and underlying concerns of the central actors involved are identified. The article then seeks to canvas explanations for these forms of contestation associated with social media at work. It is argued that the architecture of social media disrupts traditional relations in organisational life by driving employer and employee actions that (re)shape and (re)constitute the boundaries between public and private spheres. Although employers and employees are using the same social technologies, their respective concerns about and points of entry to these technologies, in contrast to traditional manifestations of conflict and resistance, are asymmetric. The article concludes with a representational summary of the relative legitimacy of concerns for organisational actors and outlines areas for future research.
Resumo:
Building on hashtag datasets gathered since January 2011, this paper will compare patterns of Twitter usage during the popular revolution in Egypt and the civil war in Libya. Using custom-made tools for processing ‘big data’ (boyd & Crawford, 2011), we will examine the volume of tweets sent by English-, Arabic-, and mixed-language Twitter users over time, and examine the networks of interaction (variously through @replying, retweeting, or both) between these groups as they developed and shifted over the course of these uprisings. Examining @reply and retweet traffic, we will identify general patterns of information flow between the English- and Arabic-speaking sides of the Twittersphere, and highlight the roles played by key boundary riders connecting both language spheres. Further, we will examine the URLs shared in these hashtags by Twitter participants, to identify the most prominent overall information sources, examine differences in the information diet experienced by English- and Arabic-language users, and investigate whether there are any online sources whose URLs are transcending language boundaries more frequently than others.
Resumo:
PURPOSE To assess the performance of the 2Win eccentric videorefractor in relation to subjective refraction and table-mounted autorefraction. METHODS Eighty-six eyes of 86 adults (46 male and 40 female subjects) aged between 20 and 25 years were examined. Subjective refraction and autorefraction using the table-mounted Topcon KR8800 and the handheld 2Win videorefractor were carried out in a randomized fashion by three different masked examiners. Measurements were repeated about 1 week after to assess instrument reproducibility, and the intertest variability was compared between techniques. Agreement of the 2Win videorefractor with subjective refraction and autorefraction was assessed for sphere and for cylindrical vectors at 0 degrees (J0) and 45 degrees (J45). RESULTS Reproducibility coefficients for sphere values measured by subjective refraction, Topcon KR8800, and 2Win (±0.42, ±0.70, and ±1.18, respectively) were better than their corresponding J0 (±1.0, ±0.85, and ±1.66) and J45 (±1.01, ±0.87, and ±1.31) vector components. The Topcon KR8800 showed the most reproducible values for mean spherical equivalent refraction and the J0 and J45 vector components, whereas reproducibility of spherical component was best for subjective refraction. The 2Win videorefractor measurements were the least reproducible for all measures. All refractive components measured by the 2Win videorefractor did not differ significantly from those of subjective refraction, in both sessions (p > 0.05). The Topcon KR8800 autorefractometer and the 2Win videorefractor measured significantly more positive spheres and mean spherical equivalent refraction (p < 0.0001), but the J0 and J45 vector components were similar (p > 0.05), in both sessions. CONCLUSIONS The 2Win videorefractor compares well, on average, with subjective refraction. The reproducibility values for the 2Win videorefractor were considerably worse than either subjective refraction or autorefraction. The wide limits of reproducibility of the 2Win videorefractor probably limit its usefulness as a primary screening device.
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.
Resumo:
Toughness is the ability of a material to deform plastically and to absorb energy before fracture. The first of its kind, this book covers the most recent developments in the toughening of hard coatings and the methodologies for measuring the toughness of thin films and coatings. The book looks at the present status of toughness for coatings and discusses high-temperature nanocomposite coatings, porous thin films, laser treated surface layers, cracking resistance, indentation techniques, sliding contact fracture, IPN hybrid composites for protection, and adhesion strength.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.
Resumo:
This essay presents a locally-grounded theoretical framework for studying youth and everyday peace(building). Drawing on examples from fieldwork as well as insights from the articles to follow in the journal, the essay highlights three interrelated and overlapping spheres of inquiry. First, it makes the case for examining the age-specific as well as gender-, and other contextually-specific roles of youth as they relate to everyday peacebuilding. Second, the essay draws attention to how everyday peace is narrated by or through youth. It poses questions about what values, policies, and governmental structures are specifically being resisted and rejected, and how peace is conceptualised and/or hidden in the narratives of youth. Third, along with these concerns, the nexus of global and local (including discursive and institutional) structures that facilitate, curtail, and curtain everyday peace (building) practices are important to identify and evaluate for their impacts on the roles and ideas of youth. In proposing this theoretical framework that recognises the complex and multiple ways youth are engaged in their everyday worlds, this essay asks how we can engage this recognition within knowledges and practices of everyday peace(building).
Resumo:
Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA·h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA·h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (⩾95%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.
Resumo:
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.