498 resultados para N-BODY PROBLEM
Resumo:
Objective: The Brief Michigan Alcoholism Screening Test (bMAST) is a 10-item test derived from the 25-item Michigan Alcoholism Screening Test (MAST). It is widely used in the assessment of alcohol dependence. In the absence of previous validation studies, the principal aim of this study was to assess the validity and reliability of the bMAST as a measure of the severity of problem drinking. Method: There were 6,594 patients (4,854 men, 1,740 women) who had been referred for alcohol-use disorders to a hospital alcohol and drug service who voluntarily participated in this study. Results: An exploratory factor analysis defined a two-factor solution, consisting of Perception of Current Drinking and Drinking Consequences factors. Structural equation modeling confirmed that the fit of a nine-item, two-factor model was superior to the original one-factor model. Concurrent validity was assessed through simultaneous administration of the Alcohol Use Disorders Identification Test (AUDIT) and associations with alcohol consumption and clinically assessed features of alcohol dependence. The two-factor bMAST model showed moderate correlations with the AUDIT. The two-factor bMAST and AUDIT were similarly associated with quantity of alcohol consumption and clinically assessed dependence severity features. No differences were observed between the existing weighted scoring system and the proposed simple scoring system. Conclusions: In this study, both the existing bMAST total score and the two-factor model identified were as effective as the AUDIT in assessing problem drinking severity. There are additional advantages of employing the two-factor bMAST in the assessment and treatment planning of patients seeking treatment for alcohol-use disorders. (J. Stud. Alcohol Drugs 68: 771-779,2007)
Interaction between disinhibition and restraint: Implications for body weight and eating disturbance
Resumo:
An increase in obesity is usually accompanied by an increase in eating disturbances. Susceptibility to these states may arise from different combinations of underlying traits: Three Factor Eating Questionnaire (TFEQ) Restraint and Disinhibition. Two studies were conducted to examine the interaction between these traits; one on-line study (n=351) and one laboratory-based study (n=120). Participants completed a battery of questionnaires and provided self-report measures of body weight and physical activity. A combination of high Disinhibition and high Restraint was associated with a problematic eating behaviour profile (EAT-26), and a higher rate of smoking and alcohol consumption. A combination of high Disinhibition and low Restraint was associated with a higher susceptibility to weight gain and a higher sedentary behaviour. These data show that different combinations of Disinhibition and Restraint are associated with distinct weight and behaviour outcomes.
Resumo:
Throughout the developed world there is an increasing prevalence of childhood obesity. Because of this increase, and awareness of the risks to long term health that childhood obesity presents, the phenomena is now described by many as a global epidemic. Children, Obesity and Exercise provides sport, exercise and medicine students and professionals with an accessible and practical guide to understanding and managing childhood and adolescent obesity. It covers: overweight, obesity and body composition; physical activity, growth and development; psycho-social aspects of childhood obesity; physical activity behaviours; eating behaviours; measuring childrens behaviour; interventions for prevention and management of childhood obesity. Children, Obesity and Exercise addresses the need for authoritative advice and innovative approaches to the prevention and management of this chronic problem.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Resumo:
Cloud computing has become a main medium for Software as a Service (SaaS) hosting as it can provide the scalability a SaaS requires. One of the challenges in hosting the SaaS is the placement process where the placement has to consider SaaS interactions between its components and SaaS interactions with its data components. A previous research has tackled this problem using a classical genetic algorithm (GA) approach. This paper proposes a cooperative coevolutionary algorithm (CCEA) approach. The CCEA has been implemented and evaluated and the result has shown that the CCEA has produced higher quality solutions compared to the GA.
Resumo:
If one clear argument emerged from my doctoral thesis in political science, it is that there is no agreement as to what democracy is. There are over 40 different varieties of democracy ranging from those in the mainstream with subtle or minute differences to those playing by themselves in the corner. And many of these various types of democracy are very well argued, empirically supported, and highly relevant to certain polities. The irony is that the thing which all of these democratic varieties or the ‘basic democracy’ that all other forms of democracy stem from, is elusive. There is no international agreement in the literature or in political practice as to what ‘basic democracy’ is and that is problematic as many of us use the word ‘democracy’ every day and it is a concept of tremendous importance internationally. I am still uncertain as to why this problem has not been resolved before by far greater minds than my own, and it may have something to do with the recent growth in democratic theory this past decade and the innovative areas of thought my thesis required, but I think I’ve got the answer. By listing each type of democracy and filling the column next to this list with the literature associated with these various styles of democracy, I amassed a large and comprehensive body of textual data. My research intended to find out what these various styles of democracy had in common and to create a taxonomy (like the ‘tree of life’ in biology) of democracy to attempt at showing how various styles of democracy have ‘evolved’ over the past 5000 years.ii I then ran a word frequency analysis program or a piece of software that counts the 100 most commonly used words in the texts. This is where my logic came in as I had to make sense of these words. How did they answer what the most fundamental commonalities are between 40 different styles of democracy? I used a grounded theory analysis which required that I argue my way through these words to form a ‘theory’ or plausible explanation as to why these particular words and not others are the important ones for answering the question. It came down to the argument that all 40 styles of democracy analysed have the following in common 1) A concept of a citizenry. 2) A concept of sovereignty. 3) A concept of equality. 4) A concept of law. 5) A concept of communication. 6) And a concept of selecting officials. Thus, democracy is a defined citizenry with its own concept of sovereignty which it exercises through the institutions which support the citizenry’s understandings of equality, law, communication, and the selection of officials. Once any of these 6 concepts are defined in a particular way it creates a style of democracy. From this, we can also see that there can be more than one style of democracy active in a particular government as a citizenry is composed of many different aggregates with their own understandings of the six concepts.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.
Resumo:
Throughout history, developments in medicine have aimed to improve patient quality of life, and reduce the trauma associated with surgical treatment. Surgical access to internal organs and bodily structures has been traditionally via large incisions. Endoscopic surgery presents a technique for surgical access via small (1 Omm) incisions by utilising a scope and camera for visualisation of the operative site. Endoscopy presents enormous benefits for patients in terms of lower post operative discomfort, and reduced recovery and hospitalisation time. Since the first gall bladder extraction operation was performed in France in 1987, endoscopic surgery has been embraced by the international medical community. With the adoption of the new technique, new problems never previously encountered in open surgery, were revealed. One such problem is that the removal of large tissue specimens and organs is restricted by the small incision size. Instruments have been developed to address this problem however none of the devices provide a totally satisfactory solution. They have a number of critical weaknesses: -The size of the access incision has to be enlarged, thereby compromising the entire endoscopic approach to surgery. - The physical quality of the specimen extracted is very poor and is not suitable to conduct the necessary post operative pathological examinations. -The safety of both the patient and the physician is jeopardised. The problem of tissue and organ extraction at endoscopy is investigated and addressed. In addition to background information covering endoscopic surgery, this thesis describes the entire approach to the design problem, and the steps taken before arriving at the final solution. This thesis contributes to the body of knowledge associated with the development of endoscopic surgical instruments. A new product capable of extracting large tissue specimens and organs in endoscopy is the final outcome of the research.
Resumo:
This thesis provides a behavioural perspective to the problem of collusive tendering in the construction market by examining the decision making factors of individuals potentially involved in such agreements using marketing ethics theory and techniques. The findings of a cross disciplinary literature review were synthesised into a model of factors theoretically expected to determine the individual's behavioural intent towards a set of collusive tendering agreements and the means of reaching them. The factors were grouped as internal cognitive (the individuals' value systems) and affective (demographic and psychographic characteristics) as well as external environmental (legal, industrial and organisational codes and norms) and situational (company, market and economic conditions). The model was tested using empirical data collected through a questionnaire survey of estimators employed in the largest Australian construction firms. All forms of explicit collusive tendering agreements were considered as having a prohibitive moral content by the majority of respondents who also clearly differentiated between agreements and discussions of contract terms (which they found to be a moral concern but not prohibitive) or of prices. The comparisons between those of the respondents that would never participate in a collusive agreement and the potential offenders clearly showed two distinctly different groups. The law abiding estimators are less reliant on situational factors, happier and more comfortable in their work environments and they live according to personal value and belief systems. The potential offenders on the other hand are mistrustful of colleagues, feel their values are not respected, put company priorities above principles and none of them is religious or a member of a professional body. The research results indicate that Australian estimators are, overall law abiding and principled and accept the existing codification of collusion as morally defensible and binding. Professional bodies' and organisational codes of conduct as well as personal value and belief systems that guide one's own conduct appear to be deterrents to collusive tendering intent and so are moral comfort and work satisfaction. These observations are potential indicators of areas where intervention and behaviour modification can increase individuals' resistance to collusion.
Resumo:
This work is a digital version of a dissertation that was first submitted in partial fulfillment of the Degree of Doctor of Philosophy at the Queensland University of Technology (QUT) in March 1994. The work was concerned with problems of self-organisation and organisation ranging from local to global levels of hierarchy. It considers organisations as living entities from local to global things that a living entity – more particularly, an individual, a body corporate or a body politic - must know and do to maintain an existence – that is to remain viable – or to be sustainable. The term ‘land management’ as used in 1994 was later subsumed into a more general concept of ‘natural resource management’ and then merged with ideas about sustainable socioeconomic and sustainable ecological development. The cybernetic approach contains many cognitive elements of human observation, language and learning that combine into production processes. The approach tends to highlight instances where systems (or organisations) can fail because they have very little chance of succeeding. Thus there are logical necessities as well as technical possibilities in designing, constructing, operating and maintaining production systems that function reliably over extended periods. Chapter numbers and titles to the original thesis are as follows: 1. Land management as a problem of coping with complexity 2. Background theory in systems theory and cybernetic principles 3. Operationalisation of cybernetic principles in Beer’s Viable System Model 4. Issues in the design of viable cadastral surveying and mapping organisation 5. An analysis of the tendency for fragmentation in surveying and mapping organisation 6. Perambulating the boundaries of Sydney – a problem of social control under poor standards of literacy 7. Cybernetic principles in the process of legislation 8. Closer settlement policy and viability in agricultural production 9. Rate of return in leasing Crown lands