135 resultados para Minkowski sum
Resumo:
A nation-wide passive air sampling campaign recorded concentrations of persistent organic pollutants in Australia's atmosphere in 2012. XAD-based passive air samplers were deployed for one year at 15 sampling sites located in remote/background, agricultural and semi-urban and urban areas across the continent. Concentrations of 47 polychlorinated biphenyls ranged from 0.73 to 72 pg m-3 (median of 8.9 pg m-3) and were consistently higher at urban sites. The toxic equivalent concentration for the sum of 12 dioxin-like PCBs was low, ranging from below detection limits to 0.24 fg m-3 (median of 0.0086 fg m-3). Overall, the levels of polychlorinated biphenyls in Australia were among the lowest reported globally to date. Among the organochlorine pesticides, hexachlorobenzene had the highest (median of 41 pg m-3) and most uniform concentration (with a ratio between highest and lowest value [similar]5). Bushfires may be responsible for atmospheric hexachlorobenzene levels in Australia that exceeded Southern Hemispheric baseline levels by a factor of [similar]4. Organochlorine pesticide concentrations generally increased from remote/background and agricultural sites to urban sites, except for high concentrations of [small alpha]-endosulfan and DDTs at specific agricultural sites. Concentrations of heptachlor (0.47-210 pg m-3), dieldrin (ND-160 pg m-3) and trans- and cis-chlordanes (0.83-180 pg m-3, sum of) in Australian air were among the highest reported globally to date, whereas those of DDT and its metabolites (ND-160 pg m-3, sum of), [small alpha]-, [small beta]-, [gamma]- and [small delta]-hexachlorocyclohexane (ND-6.7 pg m-3, sum of) and [small alpha]-endosulfan (ND-27 pg m-3) were among the lowest.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Background: The vast majority of BRCA1 missense sequence variants remain uncharacterised for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. Objective: To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. Methods and Results: Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. Conclusions: A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as "benign". In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through subcellular mislocalisation. However, the combined odds of 262:1 in favour of causality of this variant does not meet the minimal ratio of 1000:1 for classification as pathogenic, and A1708E remains formally designated as unclassified. Our findings highlight the importance of comprehensive genetic information, together with detailed functional analysis for the definitive categorisation of unclassified sequence variants. This combination of analyses may have direct application to the characterisation of other unclassified variants in BRCA1 and BRCA2.
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.
Resumo:
Water temperature measurements from Wivenhoe Dam offer a unique opportunity for studying fluctuations of temperatures in a subtropical dam as a function of time and depth. Cursory examination of the data indicate a complicated structure across both time and depth. We propose simplifying the task of describing these data by breaking the time series at each depth into physically meaningful components that individually capture daily, subannual, and annual (DSA) variations. Precise definitions for each component are formulated in terms of a wavelet-based multiresolution analysis. The DSA components are approximately pairwise uncorrelated within a given depth and between different depths. They also satisfy an additive property in that their sum is exactly equal to the original time series. Each component is based upon a set of coefficients that decomposes the sample variance of each time series exactly across time and that can be used to study both time-varying variances of water temperature at each depth and time-varying correlations between temperatures at different depths. Each DSA component is amenable for studying a certain aspect of the relationship between the series at different depths. The daily component in general is weakly correlated between depths, including those that are adjacent to one another. The subannual component quantifies seasonal effects and in particular isolates phenomena associated with the thermocline, thus simplifying its study across time. The annual component can be used for a trend analysis. The descriptive analysis provided by the DSA decomposition is a useful precursor to a more formal statistical analysis.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
OBJECTIVE To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance.
Resumo:
The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, approximately 0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.
Resumo:
Parabens, benzophenone-3 and triclosan are common ingredients used as preservatives, ultraviolet radiation filters and antimicrobial agents, respectively. Human exposure occurs through consumption of processed food and use of cosmetics and consumer products. The aim of this study was to provide a preliminary characterisation of exposure to selected personal care product chemicals in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n= 24 pools of 100). Concentrations of free and total (sum of free plus conjugated) species of methyl, ethyl, propyl and butyl paraben, benzophenone-3 and triclosan were quantified using isotope dilution tandem mass spectrometry; with geometric means 232, 33.5, 60.6, 4.32, 61.5 and 87.7. ng/mL, respectively. Age was inversely associated with paraben concentration, and females had concentrations approximately two times higher than males. Total paraben and benzophenone-3 concentrations are significantly higher than reported worldwide, and the average triclosan concentration was more than one order of magnitude higher than in many other populations. This study provides the first data on exposure of the general Australian population to a range of common personal care product chemical ingredients, which appears to be prevalent and warrants further investigation.
Resumo:
Background Population pharmacokinetic models combined with multiple sets of age– concentration biomonitoring data facilitate back-calculation of chemical uptake rates from biomonitoring data. Objectives We back-calculated uptake rates of PBDEs for the Australian population from multiple biomonitoring surveys (top-down) and compared them with uptake rates calculated from dietary intake estimates of PBDEs and PBDE concentrations in dust (bottom-up). Methods Using three sets of PBDE elimination half-lives, we applied a population pharmacokinetic model to the PBDE biomonitoring data measured between 2002–2003 and 2010–2011 to derive the top-down uptake rates of four key PBDE congeners and six age groups. For the bottom-up approach, we used PBDE concentrations measured around 2005. Results Top-down uptake rates of Σ4BDE (the sum of BDEs 47, 99, 100, and 153) varied from 7.9 to 19 ng/kg/day for toddlers and from 1.2 to 3.0 ng/kg/day for adults; in most cases, they were—for all age groups—higher than the bottom-up uptake rates. The discrepancy was largest for toddlers with factors up to 7–15 depending on the congener. Despite different elimination half-lives of the four congeners, the age–concentration trends showed no increase in concentration with age and were similar for all congeners. Conclusions In the bottom-up approach, PBDE uptake is underestimated; currently known pathways are not sufficient to explain measured PBDE concentrations, especially in young children. Although PBDE exposure of toddlers has declined in the past years, pre- and postnatal exposure to PBDEs has remained almost constant because the mothers’ PBDE body burden has not yet decreased substantially.
Resumo:
As accountants, we are all familiar with the SUM function, which calculates the sum in a range of numbers. However, there are instances where we might want to sum numbers in a given range based on a specified criteria. In this instance the SUM IF function can achieve this objective.
Resumo:
When working with functions in Excel you can reference a range of cells by simply selecting the cells. For instance if you wanted to sum all your first month sales located in the range B3:B16, the function would be =SUM(B3:B16).
Resumo:
This paper considers the optimal allocation of a given amount of foreign aid between two recipient countries. It is shown that, given consumer preferences, a country following a more restrictive trade policy would receive a smaller share of the aid if the donor country maximises its own welfare in allocating aid. If, on the other hand, the donor country allocates aid in order to maximize the sum of the welfare of the two recipient countries, the result is just the opposite. Finally, we analyze the situation where the recipient countries compete with each other for the given amount of aid. It is shown that this competition tends to lower the level of optimal tariffs in the recipient countries.