375 resultados para Linear Matrix Inequalities
Resumo:
Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts-soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface.
Resumo:
During growth of antral ovarian follicles granulosa cells first become associated with a novel type of extracellular matrix, focimatrix, and at larger sizes follicles become either subordinate or dominant. To examine this, bovine subordinate (9.0±s.e.m. 0.4 mm; n=16), partially dominant (12.0±0.6 mm; n=18) and fully dominant (15.0±0.4 mm; n=14) follicles were examined by real time RT-PCR analyses of granulosa cells and by immunohistochemistry of focimatrix. Changes in the expression of FSH receptor, LH receptor, cholesterol side-chain cleavage (CYP11A1), 3β-hydroxysteroid dehydrogenase, aromatase (CYP19A1) and inhibin-α and β-B were observed as expected for follicle sizes examined. After adjusting for size differences, only CYP11A1 was significantly different between the groups, and elevated in dominant follicles. Also after adjusting for differences in size there were no significant differences in expression of focimatrix components collagen type IV α-1 (COL4A1), laminin β-2, nidogen 1 (NID1), and perlecan (HSPG2) or the volume density of NID1 and -2 and HSPG2. The volume density of focimatrix components in laminin 111 was significantly elevated in dominant follicles. Adjusting for analysis of more than one follicle per animal and for multiple correlations, CYP11A1 mRNA levels were highly correlated with the focimatrix genes COL4A1, NID1 and -2 and HSPG2. Thus, focimatrix may potentially regulate CYP11A1 expression, and the regulation of both could be important in follicular dominance.
Resumo:
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.