187 resultados para Light Trapping
Resumo:
The use of camera traps in wildlife management is an increasingly common practice. A phenomenon which is also becoming more common is for such camera traps to unintentionally film individuals engaged in a variety of activities, ranging from the innocent to the nefarious and including lewd or potentially embarrassing behaviour. It is therefore possible for the use of camera traps to accidentally encroach upon the privacy rights of persons who venture into the area of surveillance. In this chapter we describe the legal framework of privacy in Australia and discuss the potential risk of this sleeping tiger for users of camera traps. We also present the results of a survey of camera trap users to assess the frequency of such unintended captures and the nature of activity being filmed before discussing the practical implications of these laws for camera traps users in this country and make recommendations.
Resumo:
We show that the parallax motion resulting from non-nodal rotation in panorama capture can be exploited for light field construction from commodity hardware. Automated panoramic image capture typically seeks to rotate a camera exactly about its nodal point, for which no parallax motion is observed. This can be difficult or impossible to achieve due to limitations of the mounting or optical systems, and consequently a wide range of captured panoramas suffer from parallax between images. We show that by capturing such imagery over a regular grid of camera poses, then appropriately transforming the captured imagery to a common parameterisation, a light field can be constructed. The resulting four-dimensional image encodes scene geometry as well as texture, allowing an increasingly rich range of light field processing techniques to be applied. Employing an Ocular Robotics REV25 camera pointing system, we demonstrate light field capture,refocusing and low-light image enhancement.
Resumo:
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.
Light sensitive alkoxyamines: New efficient agents for nitroxide mediated photopolymerisation (NMP2)
Resumo:
This paper examines the feasibility of using vertical light pipes to naturally illuminate the central core of a multilevel building not reached by window light. The challenges addressed were finding a method to extract and distribute equal amounts of light at each level and designing collectors to improve the effectiveness of vertical light pipes in delivering low elevation sunlight to the interior. Extraction was achieved by inserting partially reflecting cones within transparent sections of the pipes at each floor level. Theory was formulated to estimate the partial reflectance necessary to provide equal light extraction at each level. Designs for daylight collectors formed from laser cut panels tilted above the light pipe were developed and the benefits and limitations of static collectors as opposed to collectors that follow the sun azimuth investigated. Performance was assessed with both basic and detailed mathematical simulation and by observations made with a five level model building under clear sky conditions.
Resumo:
This project was a step forward in developing new recyclable photocatalysts for chemical reactions. These new photocatalysts can facilitate reactions by using visible light under moderate reaction conditions which is suitable for a sustainable, green and eco-friendly modern chemical industry. The outcome of the study greatly extended our understanding in metal nanoparticle photocatalysis, which reveals new photocatalytic mechanisms for the controlled transformation of chemical reactions. The prospect of sunlight irradiation driving chemical reactions may provide opportunity for the organic synthesis via a more controlled, simplified, and greener process in the future.
Resumo:
Light-n:doubt is an exhibition exploring the changing landscape between light and sculpture at 65 Hindley Street, Adelaide in 2003. The exhibition references research through the notion of 'otherness'. This show of work foregrounds the play between the materiality and idea of the object and what it 'speaks', the symbolic resonance of the object within space, and the role of the viewer in constructing language through form. Light-n:doubt at 64 Hindley Street, Adelaide. 20th-28th November, 2003. 11am-7pm.
Resumo:
Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H2O2. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.
Resumo:
As a precursor to the 2014 G20 Leaders’ Summit held in Brisbane, Australia, the Queensland Government sponsored a program of G20 Cultural Celebrations, designed to showcase the Summit’s host city. The cultural program’s signature event was the Colour Me Brisbane festival, a two-week ‘citywide interactive light and projection installations’ festival that was originally slated to run from 24 October to 9 November, but which was extended due to popular demand to conclude with the G20 Summit itself on 16 November. The Colour Me Brisbane festival comprised a series projection displays that promoted visions of the city’s past, present, and future at landmark sites and iconic buildings throughout the city’s central business district and thus transformed key buildings into forms of media architecture. In some instances the media architecture installations were interactive, allowing the public to control aspects of the projections through a computer interface situated in front of the building; however, the majority of the installations were not interactive in this sense. The festival was supported by a website that included information regarding the different visual and interactive displays and links to social media to support public discussion regarding the festival (Queensland Government 2014). Festival-goers were also encouraged to follow a walking-tour map of the projection sites that would take them on a 2.5 kilometre walk from Brisbane’s cultural precinct, through the city centre, concluding at parliament house. In this paper, we investigate the Colour Me Brisbane festival and the broader G20 Cultural Celebrations as a form of strategic placemaking—designed, on the one hand, to promote Brisbane as a safe, open, and accessible city in line with the City Council’s plan to position Brisbane as a ‘New World City’ (Brisbane City Council 2014). On the other hand, it was deployed to counteract growing local concerns and tensions over the disruptive and politicised nature of the G20 Summit by engaging the public with the city prior to the heightened security and mobility restrictions of the Summit weekend. Harnessing perspectives from media architecture (Brynskov et al. 2013), urban imaginaries (Cinar & Bender 2007), and social media analysis, we take a critical approach to analysing the government-sponsored projections, which literally projected the city onto itself, and public responses to them via the official, and heavily promoted, social media hashtags (#colourmebrisbane and #g20cultural). Our critical framework extends the concepts of urban phantasmagoria and urban imaginaries into the emerging field of media architecture to scrutinise its potential for increased political and civic engagement. Walter Benjamin’s concept of phantasmagoria (Cohen 1989; Duarte, Firmino, & Crestani 2014) provides an understanding of urban space as spectacular projection, implicated in commodity and techno-culture. The concept of urban imaginaries (Cinar & Bender 2007; Kelley 2013)—that is, the ways in which citizens’ experiences of urban environments are transformed into symbolic representations through the use of imagination—similarly provides a useful framing device in thinking about the Colour Me Brisbane projections and their relation to the construction of place. Employing these critical frames enables us to examine the ways in which the installations open up the potential for multiple urban imaginaries—in the sense that they encourage civic engagement via a tangible and imaginative experience of urban space—while, at the same time, supporting a particular vision and way of experiencing the city, promoting a commodified, sanctioned form of urban imaginary. This paper aims to dissect the urban imaginaries intrinsic to the Colour Me Brisbane projections and to examine how those imaginaries were strategically deployed as place-making schemes that choreograph reflections about and engagement with the city.
Resumo:
There is strong evidence across the media that humanity has finally come to recognize the certainty and imminence of a global environmental crisis due to man-triggered ecological alterations. This widespread recognition of what is happening around us has matured even further as studies acknowledging that everything on Earth is interconnected begin to mount across various branches of learning. The appreciation of this simple linear and two-dimensional relationship implies enormous consequences for economic and management studies, as alternative business models will eventually have to supersede the old practices that still govern major industry sectors (e.g. energy, cement, agriculture, automotive, pharmaceutical, etc.). This paper argues that traditional knowledge found in developing countries can sometimes harness the potential of sparking genuine alternatives to established business practices. With a focus on the most fundamental geochemical cycles on Earth − nitrogen, water, and carbon − and the primary resources they govern (soil, water, and air), three case studies are presented to illustrate how traditional knowledge in the context of GRI (Grassroots Innovation) projects can lead to challenge the dominant logic, when allowed to thrive in terms of adoption and scalability.
Resumo:
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.