367 resultados para Lexical decision
Resumo:
There is a lack of research which identifies the role of the public-sector client in relation to ethical practice in plan procurement. This paper discusses a conceptual framework for ethical decision making in project procurement, focusing on public sector clients within the Malaysian construction industry. A framework is proposed to ensure that effective ethical decision making strategies are deployed to ensure that plan procurement is carried out with a transparent process so that the public sector clients are able to adopt. The conceptual framework adopts various factors that contribute to ethical decision making at the early stage of procurement and consists of the procurement system, individual factors, project characteristics, and organizational culture as the internal factors and professional code of conduct and government policies as the external factors. This framework rationalizes the relationships between systems, psychology and organizational theory to form an innovative understanding of making ethical decisions in plan procurement. It is expected that this proposed framework will be useful as a foundation for identifying the factors that contribute to ethical decision making focusing on the planning stage of procurement process.
Resumo:
The first use of computing technologies and the development of land use models in order to support decision-making processes in urban planning date back to as early as mid 20th century. The main thrust of computing applications in urban planning is their contribution to sound decision-making and planning practices. During the last couple of decades many new computing tools and technologies, including geospatial technologies, are designed to enhance planners' capability in dealing with complex urban environments and planning for prosperous and healthy communities. This chapter, therefore, examines the role of information technologies, particularly internet-based geographic information systems, as decision support systems to aid public participatory planning. The chapter discusses challenges and opportunities for the use of internet-based mapping application and tools in collaborative decision-making, and introduces a prototype internet-based geographic information system that is developed to integrate public-oriented interactive decision mechanisms into urban planning practice. This system, referred as the 'Community-based Internet GIS' model, incorporates advanced information technologies, distance learning, sustainable urban development principles and community involvement techniques in decision-making processes, and piloted in Shibuya, Tokyo, Japan.
Resumo:
With the growing importance of sustainability assessment in the construction industry, many green building rating schemes have been adopted in the building sector of Australia. However, there is an abnormal delay in the similar adoption in the infrastructure sector. This prolonged delay in practice poses a challenge in mapping the project objectives with sustainability outcomes. Responding to the challenge of sustainable development in infrastructure, it is critical to create a set of decision indicators for sustainability in infrastructure, which to be used in conjunction with the emerging infrastructure sustainability assessment framework of the Australian Green Infrastructure Council. The various literature sources confirm the lack of correlation between sustainability and infrastructure. This theoretical missing link signifies the crucial validation of the interrelationship and interdependency in sustainability, decision making and infrastructure. This validation is vital for the development of decision indicators for sustainability in infrastructure. Admittedly, underpinned by the serious socio-environmental vulnerability, the traditional focus on economic emphasis in infrastructure development needs to be drifted towards the appropriate decisions for sustainability enhancing the positive social and environmental outcomes. Moreover, the research findings suggest sustainability being observed as powerful socio-political and influential socio-environmental driver in deciding the infrastructure needs and its development. These newly developed sustainability decision indicators create the impetus for change leading to sustainability in infrastructure by integrating the societal cares, environmental concerns into the holistic financial consideration. Radically, this development seeks to transform principles into actions for infrastructure sustainability. Lastly, the thesis concludes with knowledge contribution in five significant areas and future research opportunities. The consolidated research outcomes suggest that the development of decision indicators has demonstrated sustainability as a pivotal driver for decision making in infrastructure.
Resumo:
Internationally, sentencing research has largely neglected the impact of Indigeneity on sentencing outcomes. Using data from Western Australia’s higher courts for the years 2003–05, we investigate the direct and interactive effects of Indigenous status on the judicial decision to imprison. Unlike prior research on race/ethnicity in which minority offenders are often found to be more harshly treated by sentencing courts, we find that Indigenous status has no direct effect on the decision to imprison,after adjusting for other sentencing factors (especially past and current criminality).However, there are sub-group differences: Indigenous males are more likely to receive a prison sentence compared to non-Indigenous females. We draw on the focal concerns perspective of judicial decision making in interpreting our findings.
Resumo:
Reliable infrastructure assets impact significantly on quality of life and provide a stable foundation for economic growth and competitiveness. Decisions about the way assets are managed are of utmost importance in achieving this. Timely renewal of infrastructure assets supports reliability and maximum utilisation of infrastructure and enables business and community to grow and prosper. This research initially examined a framework for asset management decisions and then focused on asset renewal optimisation and renewal engineering optimisation in depth. This study had four primary objectives. The first was to develop a new Asset Management Decision Framework (AMDF) for identifying and classifying asset management decisions. The AMDF was developed by applying multi-criteria decision theory, classical management theory and life cycle management. The AMDF is an original and innovative contribution to asset management in that: · it is the first framework to provide guidance for developing asset management decision criteria based on fundamental business objectives; · it is the first framework to provide a decision context identification and analysis process for asset management decisions; and · it is the only comprehensive listing of asset management decision types developed from first principles. The second objective of this research was to develop a novel multi-attribute Asset Renewal Decision Model (ARDM) that takes account of financial, customer service, health and safety, environmental and socio-economic objectives. The unique feature of this ARDM is that it is the only model to optimise timing of asset renewal with respect to fundamental business objectives. The third objective of this research was to develop a novel Renewal Engineering Decision Model (REDM) that uses multiple criteria to determine the optimal timing for renewal engineering. The unique features of this model are that: · it is a novel extension to existing real options valuation models in that it uses overall utility rather than present value of cash flows to model engineering value; and · it is the only REDM that optimises timing of renewal engineering with respect to fundamental business objectives; The final objective was to develop and validate an Asset Renewal Engineering Philosophy (AREP) consisting of three principles of asset renewal engineering. The principles were validated using a novel application of real options theory. The AREP is the only renewal engineering philosophy in existence. The original contributions of this research are expected to enrich the body of knowledge in asset management through effectively addressing the need for an asset management decision framework, asset renewal and renewal engineering optimisation based on fundamental business objectives and a novel renewal engineering philosophy.
Resumo:
Subtropical Design in South East Queensland provides a direct link between climatic design, applied urban design and sustainable planning policy. The role that character and identity of a place plays in achieving environmental sustainability is explained. Values of local distinctiveness to do with climate, landscape and culture are identified and the environmental, social and economic benefits of applying subtropical design principles to planning are described. The handbook provides planners and urban designers with an understanding of how subtropical design principles apply within the different contexts of urban planning including the entire spectrum of urban scales from the regional scale, to the city, neighbourhood, street, individual building or site. Twelve interactive principles, and interrelated strategies, drawn predominantly from the body of knowledge of landscape architecture, architectural science and urban design are described in detail in text, and richly illustrated with diagrams and photographs.
Resumo:
This paper investigates in how to utilize ICT and Web 2.0 technologies and e-democracy software for policy decision-making. It introduces a cutting edge decision-making system that integrates the practice of e-petitions, e-consultation, e-rulemaking, e-voting, and proxy voting. The paper demonstrates how under precondition of direct democracy through the use this system the collective intelligence (CI) of a population would be gathered and used throughout the policy process.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
We examine the impact of individual-specific information processing strategies (IPSs) on the inclusion/exclusion of attributes on the parameter estimates and behavioural outputs of models of discrete choice. Current practice assumes that individuals employ a homogenous IPS with regards to how they process attributes of stated choice (SC) experiments. We show how information collected exogenous of the SC experiment on whether respondents either ignored or considered each attribute may be used in the estimation process, and how such information provides outputs that are IPS segment specific. We contend that accounting the inclusion/exclusion of attributes will result in behaviourally richer population parameter estimates.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
This paper derives from research-in-progress intending both Design Research (DR) and Design Science (DS) outputs; the former a management decision tool based in IS-Impact (Gable et al. 2008) kernel theory; the latter being methodological learnings deriving from synthesis of the literature and reflection on the DR ‘case study’ experience. The paper introduces a generic, detailed and pragmatic DS ‘Research Roadmap’ or methodology, deriving at this stage primarily from synthesis and harmonization of relevant concepts identified through systematic archival analysis of related literature. The scope of the Roadmap too has been influenced by the parallel study aim to undertake DR applying and further evolving the Roadmap. The Roadmap is presented in attention to the dearth of detailed guidance available to novice Researchers in Design Science Research (DSR), and though preliminary, is expected to evolve and gradually be substantiated through experience of its application. A key distinction of the Roadmap from other DSR methods is its breadth of coverage of published DSR concepts and activities; its detail and scope. It represents a useful synthesis and integration of otherwise highly disparate DSR-related concepts.
Resumo:
This article reports on the development of the managerial ethical profile (MEP) scale. The MEP scale is a multilevel, self-reporting scale measuring the perceived influence that different dimensions of common ethical frameworks have on managerial decision making. The MEP scale measures on eight subscales: economic egoism, reputational egoism, act utilitarianism, rule utilitarianism, self-virtue of self, virtue of others, act deontology, and rule deontology. Confirmatory factor analysis (CFA) was used to provide evidence of scale validity. Future research needs and the value of this measure for business ethics are discussed.
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.