127 resultados para K-BAND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute anterior uveitis (AAU) involves inflammation of the iris and ciliary body of the eye. It occurs both in isolation and as a complication of ankylosing spondylitis (AS). It is strongly associated with HLA-B*27, but previous studies have suggested that further genetic factors may confer additional risk. We sought to investigate this using the Illumina Exomechip microarray, to compare 1504 cases with AS and AAU, 1805 with AS but no AAU and 21 133 healthy controls. We also used a heterogeneity test to test the differences in effect size between AS with AAU and AS without AAU. In the analysis comparing AS+AAU+ cases versus controls, HLA-B*27 and HLA-A*02:01 were significantly associated with the presence of AAU (P<10−300 and P=6 × 10−8, respectively). Secondary independent association with PSORS1C3 (P=4.7 × 10−5) and TAP2 (P=1.1 × 10−5) were observed in the major histocompatibility complex. There was a new suggestive association with a low-frequency variant at zinc-finger protein 154 in the AS without AAU versus control analysis (zinc-finger protein 154 (ZNF154), P=2.2 × 10−6). Heterogeneity testing showed that rs30187 in ERAP1 has a larger effect on AAU compared with that in AS alone. These findings also suggest that variants in ERAP1 have a differential impact on the risk of AAU when compared with AS, and hence the genetic risk for AAU differs from AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This commentary was stimulated by Yeping Li's first editorial (2014) citing one of the journal's goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of other journals. In this commentary I argue for a greater focus on STEM integration, with a more equitable representation of the four disciplines in studies purporting to advance STEM learning. The STEM acronym is often used in reference to just one of the disciplines, commonly science. Although the integration of STEM disciplines is increasingly advocated in the literature, studies that address multiple disciplines appear scant with mixed findings and inadequate directions for STEM advancement. Perspectives on how discipline integration can be achieved are varied, with reference to multidisciplinary, interdisciplinary, and transdisciplinary approaches adding to the debates. Such approaches include core concepts and skills being taught separately in each discipline but housed within a common theme; the introduction of closely linked concepts and skills from two or more disciplines with the aim of deepening understanding and skills; and the adoption of a transdisciplinary approach, where knowledge and skills from two or more disciplines are applied to real-world problems and projects with the aim of shaping the total learning experience. Research that targets STEM integration is an embryonic field with respect to advancing curriculum development and various student outcomes. For example, we still need more studies on how student learning outcomes arise not only from different forms of STEM integration but also from the particular disciplines that are being integrated. As noted in this commentary, it seems that mathematics learning benefits less than the other disciplines in programs claiming to focus on STEM integration. Factors contributing to this finding warrant more scrutiny. Likewise, learning outcomes for engineering within K-12 integrated STEM programs appear under-researched. This commentary advocates a greater focus on these two disciplines within integrated STEM education research. Drawing on recommendations from the literature, suggestions are offered for addressing the challenges of integrating multiple disciplines faced by the STEM community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.