211 resultados para IPO Failures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative researchers in the discipline of criminology perform a wide range of challenging tasks. They interview prisoners, police officers, magistrates and judges. They speak with survivors of domestic violence, and drink tea with the mothers of murdered children. They observe courts and communities, investigate the decision-making processes of juries and immerse themselves in the data they collect. They ask ‘big’ questions – ‘how do we criminalise the producers of toxic toys?’ – as well as ‘little’ questions – ‘what should I wear to conduct this interview?’ Qualitative Criminology: Stories from the Field brings to life the stories behind the research of both emerging and established scholars in Australian criminology. The book’s contributors provided honest, reflective, and decidedly unsanitised accounts of their qualitative research journeys - the lively tales of what really happens when conducting research of this nature, the stories that often make for parenthetical asides in conference papers but tend to be excised from journal articles. This book considers the gap between research methods and the realities of qualitative research. As such, it aims to help researchers and students who conduct qualitative criminological research reflect upon their role as researchers, and the practical, ideological and ethical issues which may arise in the course of their research. It is also a call to criminologists to make public the ‘failures’ and missteps of their research endeavours so that we can learn from one another and become better informed and more reflexive qualitative criminologists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increases in functionality, power and intelligence of modern engineered systems led to complex systems with a large number of interconnected dynamic subsystems. In such machines, faults in one subsystem can cascade and affect the behavior of numerous other subsystems. This complicates the traditional fault monitoring procedures because of the need to train models of the faults that the monitoring system needs to detect and recognize. Unavoidable design defects, quality variations and different usage patterns make it infeasible to foresee all possible faults, resulting in limited diagnostic coverage that can only deal with previously anticipated and modeled failures. This leads to missed detections and costly blind swapping of acceptable components because of one’s inability to accurately isolate the source of previously unseen anomalies. To circumvent these difficulties, a new paradigm for diagnostic systems is proposed and discussed in this paper. Its feasibility is demonstrated through application examples in automotive engine diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most recent promotions in the wind turbine fault diagnostic, from 2005 to 2012. The frequent faults and failures in wind turbines are considered and different techniques which have been used by researchers are introduced, classified and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Professor Per Davidsson, reports on a paper which synthesizes available research on the effects of VC funding on the performance of the funded firm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings is usually performed by means of vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. The aim is to monitor the integrity of the bearing components, in order to avoid catastrophic failures, or to implement condition based maintenance strategies. In particular, the trend in this field is to combine in a single algorithm different signal-enhancement and signal-analysis techniques. Among the first ones, Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to highlight the effect of a possible damage in one of the bearing components within the vibration signal. This paper presents the application of this technique to signals collected on a simple test-rig, able to test damaged industrial roller bearings in different working conditions. The effectiveness of the technique has been tested, comparing the results of one undamaged bearing with three bearings artificially damaged in different locations, namely on the inner race, outer race and rollers. Since MED performances are dependent on the filter length, the most suitable value of this parameter is defined on the basis of both the application and measured signals. This represents an original contribution of the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The policy objectives of the continuous disclosure regime augmented by the misleading or deceptive conduct provisions in the Corporations Act are to enhance the integrity and efficiency of Australian capital markets by ensuring equality of opportunity for all investors through public access to accurate and material company information to enable them to make well-informed investment decisions. This article argues that there were failures by the regulators in the performance of their roles to protect the interests of investors in Forrest v ASIC; FMG v ASIC (2012) 247 CLR 486: ASX failed to enforce timely compliance with the continuous disclosure regime and ensure that the market was properly informed by seeking immediate clarification from FMG as to the agreed fixed price and/or seeking production of a copy of the CREC agreement; and ASIC failed to succeed in the High Court because of the way it pleaded its case. The article also examines the reasoning of the High Court in Forrest v ASIC and whether it might have changed previous understandings of the Campomar test for determining whether representations directed to the public generally are misleading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Failures of fracture fixation plates, often related to fatigue fractures of the implants, have been reported (Banovetz et al, 1996). While metallurgical defects can usually be excluded, many of these fractures can be explained with the biomechanical situation. This study investigated the biomechanics of two clinical cases, both of which used a 14-hole locking compression plate. In the first case, a titanium plate was used in a rigid configuration with 12 screws resulting in plate breakage after 7 weeks (Sommer et al, 2003). In the second case, a stainless steel plate, which endured the entire healing process, was used in a flexible application with only 6 screws.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is a work-in-progress that articulates my research journey based on the development of a curriculum innovation in environmental education. This journey had two distinct, but intertwined phases: action research based fieldwork, conducted collaboratively, to create a whole school approach to environmental education curriculum planning; and a phase of analysis and reflection based on the emerging findings, as I sought to create personal "living educational theory" about change and innovation. A key stimulus for the study was the perceived theory-practice gap in environmental education, which is often presented in the literature as a criticism of teachers for failing to achieve the values and action objectives of critical environmental education. Hence, many programs and projects are considered to be superficial and inconsequential in terms of their ability to seriously address environmental issues. The intention of this study was to work with teachers in a project that would be an exemplar of critical environmental education. This would be in the form of a whole school "learnscaping" curriculum in a primary school whereby the schoolgrounds would be utilised for interdisciplinary critical environment education. Parallel with the three cycles of action research in this project, my research objectives were to identify and comment upon the factors that influence the generation of successful educational innovation. It was anticipated that the project would be a collaboration involving me, as researcher-facilitator, and many of the teachers in the school as active participants. As the project proceeded through its action cycles, however, it became obvious that the goal of developing a critical environmental education curriculum, and the use of highly participatory processes, were unrealistic. Institutional and organisational rigidities in education generally, teachers' day-to-day work demands, and the constant juggle of work, family and other responsibilities for all participants acted as significant constraints. Consequently, it became apparent that the learnscaping curriculum would not be the hoped-for exemplar. Progress was slow and, at times, the project was in danger of stalling permanently. While the curriculum had some elements of critical environmental education, these were minor and not well spread throughout the school. Overall, the outcome seemed best described as a "small win"; perhaps just another example of the theory-practice gap that I had hoped this project would bridge. Towards the project's end, however, my continuing reflection led to an exploration of chaos/complexity theory which gave new meaning to the concept of a "small win". According to this theory, change is not the product of linear processes applied methodically in purposeful and diligent ways, but emerges from serendipitous events that cannot be planned for, or forecast in advance. When this perspective of change is applied to human organisations - in this study, a busy school - the context for change is recognised not as a stable, predictable environment, but as a highly complex system where change happens all the time, cannot be controlled, and no one can be really sure where the impacts might lead. This so-called "butterfly effect" is a central idea of this theory where small changes or modifications are created - the effects of which are difficult to know, let alone determine - and which can have large-scale impacts. Allied with this effect is the belief that long term developments in an organisation that takes complexity into account, emerge by spontaneous self-organising evolution, requiring political interaction and learning in groups, rather than systematic progress towards predetermined goals or "visions". Hence, because change itself and the contexts of change are recognised as complex, chaos/complexity theory suggests that change is more likely to be slow and evolutionary - cultural change - rather than fast and revolutionary where the old is quickly ushered out by radical reforms and replaced by new structures and processes. Slow, small-scale changes are "normal", from a complexity viewpoint, while rapid, wholesale change is both unlikely and unrealistic. Therefore, the frustratingly slow, small-scale, imperfect educational changes that teachers create - including environmental education initiatives - should be seen for what they really are. They should be recognised as successful changes, the impacts of which cannot be known, but which have the potential to magnify into large-scale changes into the future. Rather than being regarded as failures for not meeting critical education criteria, "small wins" should be cause for celebration and support. The intertwined phases of collaborative action research and individual researcher reflection are mirrored in the thesis structure. The first three chapters, respectively, provide the thesis overview, the literature underpinning the study's central concern, and the research methodology. Chapters 4, 5, and 6 report on each of the three action research cycles of the study, namely Laying the Groundwork, Down to Work!, and The Never-ending Story. Each of these chapters presents a narrative of events, a literature review specific to developments in the cycle, and analysis and critique of the events, processes and outcomes of each cycle. Chapter 7 provides a synthesis of the whole of the study, outlining my interim propositions about facilitating curriculum change in schools through action research, and the implications of these for environmental education.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.