144 resultados para Hollow flange beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed procedure for second-order analysis has been coded in the newest Eurocode 3 and the Hong Kong steel code (2005). The effective length method has been noted to be inapplicable to analysis of shallow domes of imperfect members exhibiting snap-through buckling, to portals with leaning columns and others. On the other hand, the advanced analysis is not limited to buckling design of these structures. This paper demonstrates its application to the design of a simple plane sway portal and a three diminsional non-sway steel building. The results by the advanced analysis and the first-order linear analysis are compared and the technique for practical second-order analysis steel structures is described. It is observed that the use of a straight element by itself cannot model the buckling resistance of columns governed by different buckling curves for hot-rolled and cold-formed sections of various shapes like I, H, hollow etc. Also the curvature of the conventional cubic Hermite element is not varied by the external axial force and thus it cannot simulate the response of a buckling column. Thus its use for second-order analysis is basically unacceptable. A technique for additional checking of beams undergoing lateral-torsional buckling is also suggested making the advanced analysis a complete design tool for conventional steel frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, experimental and numerical investigations have been conducted to explore the possibility of using A0 mode in Lamb waves to detect the position of delamination in carbon fiber reinforced plastic (CFRP) laminated beams. An experimental technique for exciting and sensing the pure A0 mode has been developed. By measuring the propagation speed of A0 mode and traveling time of a signal reflected from the delamination, its location can be identified experimentally and numerically. Moreover, the numerical analysis has been extended to gain a better understanding of the complex interaction between A0 mode and a long delamination case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective control of the ion current distribution over large-area (up to 103 cm2) substrates with the magnetic fields of a complex structure by using two additional magnetic coils installed under the substrate exposed to vacuum arc plasmas is demonstrated. When the magnetic field generated by the additional coils is aligned with the direction of the magnetic field generated by the guiding and focusing coils of the vacuum arc source, a narrow ion density distribution with the maximum current density 117 A m-2 is achieved. When one of the additional coils is set to generate the magnetic field of the opposite direction, an area almost uniform over the substrate of 103 cm2 ion current distribution with the mean value of 45 A m-2 is achieved. Our findings suggest that the system with the vacuum arc source and two additional magnetic coils can be effectively used for the effective, high throughput, and highly controllable plasma processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SupaCee section is one of the cold-formed steel members which is increasingly used in the construction sector. It is characterized by unique ribbed web and curved lip elements, and is claimed to be more economical with extra strength than the traditional channel sections. SupaCee sections are widely used in Australia as floor joists, bearers, purlins and girts. Many experimental and numerical studies have been carried out to evaluate the behaviour and design of conventional channel beams subject to web crippling. To date, however, no investigation has been conducted into the web crippling behaviour and strength of SupaCee sections. Current cold-formed steel design equations do not include any design procedures for SupaCee sections. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of SupaCee sections under ETF and ITF load cases. Thirty six web crippling tests were conducted and the capacity results were compared with the predictions from the AS/NZS 4600 and AISI design rules developed for conventional channel sections. Comparison of ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI design equations are unconservative for SupaCee sections under ETF load case, but are overly conservative for ITF load case. Hence new equations were proposed to determine the web crippling capacities of SupaCee sections based on the experimental results from this study. Suitable design rules were also developed within the direct strength method format. This paper presents the details of this experimental study of SupaCee sections subject to web crippling and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear capacities are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of LCBs. Hence detailed experimental studies were undertaken to investigate the behaviour and strength of LCBs with stiffened web openings subject to shear, and combined bending and shear actions. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Numerical studies were also undertaken to investigate the strength of LCBs with stiffened web openings. Finite element models of LCBs with stiffened web openings under shear, combined bending and shear actions were developed to simulate the behaviour of tested LCBs. The developed models were then validated by comparing their results with experimental results and used in further studies. Both experimental and finite element analysis results showed that the stiffening arrangements recommended by past research and available design guidelines are not adequate to restore the original shear strengths of LCBs. Therefore new stiffener arrangements were proposed based on screw fastened plate stiffeners. This paper presents the details of this research study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a nonlinear finite element (FE) model for the analysis of very high strength (VHS) steel hollow sections wrapped by high modulus carbon fibre rein forced polymer (CFRP) sheets. The bond strength of CFRP wrapped VHS circular steel hollow section under tension is investigated using the FE model. The three dimensional FE model by Nonlinear static analysis has been carried out by Strand 7 finite element software. The model is validated by the experimental data obtained from Fawzia et al [1]. A detail parametric study has been performed to examine the effect of number of CFRP layers, different diameters of VHS steel tube and different bond lengths of CFRP sheet. The analytical model developed by Fawzia et al. [1] has been used to determine the load carrying capacity of different diameters of CFRP strengthened VHS steel tube by using the capacity from each layer of CFRP sheet. The results from FE model have found in reasonable agreement with the analytical model developed by Fawzia et al [1]. This validation was necessary because the analytical model by Fawzia et al [1] was developed by using only one diameter of VHS steel tube and fixed (five) number of CFRP layers. It can be concluded that the developed analytical model is valid for CFRP strengthened VHS steel tubes with diameter range of 38mm to 100mm and CFRP layer range of 3 to 5 layers. Based on the results it can also be concluded that the effective bond length is consistent for different diameters of steel tubes and different layers of CFRP. Three layers of CFRP is considered most effective wrapping scheme due to the cost effectiveness. Finally the distribution of longitudinal and hoop stress has been determined by the finite element model for different diameters of CFRP strengthened VHS steel tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity (FMC), modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 IMRT and VMAT treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, Values of SAS (with MLC apertures narrower than 10 mm defined as “small”) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360◦ arcs or as 60◦ sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.