128 resultados para Highway-railroad grade crossings
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
This study focuses on the experiences of 91 Grade 4 students who had been introduced to expectation and variation through trials of tossing a single coin many times. They were then given two coins to toss simultaneously and asked to state their expectation of the chances for the possible outcomes, in a similar manner expressed for a single coin. This paper documents the journey of the students in discovering that generally their initial expectation for two coins was incorrect and that despite variation, a large number of tosses could confirm a new expectation.
Resumo:
Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.
Resumo:
Several intelligent transportation systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions were tested: video in vehicle, audio in vehicle, and on-road flashing marker. The results from the driving simulator were inputs for a developed model that used traffic microsimulation (VISSIM 5.4) to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of changes in driver speed and compliance rate was greater at passive crossings than at active crossings. The slight difference in speed of drivers approaching ITS devices indicated that ITS helped drivers encounter crossings in a safer way. Since the traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varied depending on ITS safety devices, some modifications were made to the traffic simulation. The results showed that exposure to ITS devices at active crossings did not influence drivers’ behavior significantly according to the traffic performance indicator, such as delay time, number of stops, speed, and stopped delay. However, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
We analyzed the development of 4th-grade students’ understanding of the transition from experimental relative frequencies of outcomes to theoretical probabilities with a focus on the foundational statistical concepts of variation and expectation. We report students’ initial and changing expectations of the outcomes of tossing one and two coins, how they related the relative frequency from their physical and computersimulated trials to the theoretical probability, and how they created and interpreted theoretical probability models. Findings include students’ progression from an initial apparent equiprobability bias in predicting outcomes of tossing two coins through to representing the outcomes of increasing the number of trials. After observing the decreasing variation from the theoretical probability as the sample size increased, students developed a deeper understanding of the relationship between relative frequency of outcomes and theoretical probability as well as their respective associations with variation and expectation. Students’ final models indicated increasing levels of probabilistic understanding.
Resumo:
Derailments due to lateral collisions between heavy road vehicles and passenger trains at level crossings (LCs) are serious safety issues. A variety of countermeasures in terms of traffic laws, communication technology and warning devices are used for minimising LC accidents; however, innovative civil infrastructure solution is rare. This paper presents a study of the efficacy of guard rail system (GRS) to minimise the derailment potential of trains laterally collided by heavy road vehicles at LCs. For this purpose, a three-dimensional dynamic model of a passenger train running on a ballasted track fitted with guard rail subject to lateral impact caused by a road truck is formulated. This model is capable of predicting the lateral collision-induced derailments with and without GRS. Based on dynamic simulations, derailment prevention mechanism of the GRS is illustrated. Sensitivities of key parameters of the GRS, such as the flange way width, the installation height and contact friction, to the efficacy of GRS are reported. It is shown that guard rails can enhance derailment safety against lateral impacts at LCs.
Resumo:
The third edition of the Australian Standard AS1742 Manual of Uniform Traffic Control Devices Part 7 provides a method of calculating the sighting distance required to safely proceed at passive level crossings based on the physics of moving vehicles. This required distance becomes greater with higher line speeds and slower, heavier vehicles so that it may return quite a long sighting distance. However, at such distances, there are also concerns around whether drivers would be able to reliably identify a train in order to make an informed decision regarding whether it would be safe to proceed across the level crossing. In order to determine whether drivers are able to make reliable judgements to proceed in these circumstances, this study assessed the distance at which a train first becomes identifiable to a driver as well as their, ability to detect the movement of the train. A site was selected in Victoria, and 36 participants with good visual acuity observed 4 trains in the 100-140 km/h range. While most participants could detect the train from a very long distance (2.2 km on average), they could only detect that the train was moving at much shorter distances (1.3 km on average). Large variability was observed between participants, with 4 participants consistently detecting trains later than other participants. Participants tended to improve in their capacity to detect the presence of the train with practice, but a similar trend was not observed for detection of the movement of the train. Participants were consistently poor at accurately judging the approach speed of trains, with large underestimations at all investigated distances.