140 resultados para HTML5, MVC, GIS
Resumo:
The majority of sugar mill locomotives are equipped with GPS devices from which locomotive position data is stored. Locomotive run information (e.g. start times, run destinations and activities) is electronically stored in software called TOTools. The latest software development allows TOTools to interpret historical GPS information by combining this data with run information recorded in TOTools and geographic information from a GIS application called MapInfo. As a result, TOTools is capable of summarising run activity details such as run start and finish times and shunt activities with great accuracy. This paper presents 15 reports developed to summarise run activities and speed information. The reports will be of use pre-season to assist in developing the next year's schedule and for determining priorities for investment in the track infrastructure. They will also be of benefit during the season to closely monitor locomotive run performance against the existing schedule.
Resumo:
This research utilised software developed for managing the Australian sugar industry's cane rail transport operations and GPS data used to track locomotives to ensure safe operation of the railway system to improve transport operations. As a result, time usage in the sugarcane railway can now be summarised and locomotive arrival time to sidings and mills can be predicted. This information will help the development of more efficient run schedules and enable mill staff and harvesters to better plan their shifts ahead, enabling cost reductions through better use of available time.
Resumo:
Histories of past communities are embedded in landscapes around the world but many are suffering from material change or neglect of their fabric. This study was aimed at discovering and representing the authentic intangible experience of two historic landscapes for conservation purposes. A 2500 year old site in Yangzhou, China and a 2000 year old site on St Helena Island in Moreton Bay were found to be managed under two culturally different regimes of authenticity. This research has contributed to challenging the notion that there is only one way to conserve authenticity in historic landscapes of the Asia Pacific.
Resumo:
This review provides details on the role of Geographical Information Systems (GIS) in current dengue surveillance systems and focuses on the application of open access GIS technology to emphasize its importance in developing countries, where the dengue burden is greatest. It also advocates for increased international collaboration in transboundary disease surveillance to confront the emerging global challenge of dengue.
Resumo:
We would like to thank Hsu and others for their sincere response 1 to our short review on geographical information systems (GIS) for dengue surveillance 2 ; they raised a number of important points that we would like to address...
Resumo:
This article describes research conducted for the Japanese government in the wake of the magnitude 9.0 earthquake and tsunami that struck eastern Japan on March 11, 2011. In this study, material stock analysis (MSA) is used to examine the losses of building and infrastructure materials after this disaster. Estimates of the magnitude of material stock that has lost its social function as a result of a disaster can indicate the quantities required for reconstruction, help garner a better understanding of the volumes of waste flows generated by that disaster, and also help in the course of policy deliberations in the recovery of disaster-stricken areas. Calculations of the lost building and road materials in the five prefectures most affected were undertaken. Analysis in this study is based on the use of geographical information systems (GIS) databases and statistics; it aims to (1) describe in spatial terms what construction materials were lost, (2) estimate the amount of infrastructure material needed to rehabilitate disaster areas, and (3) indicate the amount of lost material stock that should be taken into consideration during government policy deliberations. Our analysis concludes that the material stock losses of buildings and road infrastructure are 31.8 and 2.1 million tonnes, respectively. This research approach and the use of spatial MSA can be useful for urban planners and may also convey more appropriate information about disposal based on the work of municipalities in disaster-afflicted areas.
Resumo:
Partial evaluation of infrastructure investments have resulted in expensive mistakes, unsatisfactory outcomes and increased uncertainties for too many stakeholders, communities and economies in both developing and developed nations. "Complex Stakeholder Perception Mapping" (CSPM), is a novel approach that can address existing limitations by inclusively framing, capturing and mapping the spectrum of insights and perceptions using extended Geographic Information Systems. Maps generated in CSPM offer presentations of flexibly combined, complex perceptions of stakeholders on multiple aspects of development. CSPM extends the applications of GIS software in non-spatial mapping and of Multi-Criteria Analysis with a multidimensional evaluation platform and augments decision science capabilities in addressing complexities. Application of CSPM can improve local and regional economic gains from infrastructure projects and aid any multi-objective and multi-stakeholder decision situations.
Resumo:
Skills in spatial sciences are fundamental to understanding our world in context. Increasing digital presence and the availability of data with accurate spatial components has allowed almost everything researchers and students do to be represented in a spatial context. Representing outcomes and disseminating information has moved from 2D to 4D with time series animation. In the next 5 years industry will not only demand QUT graduates have spatial skills along with analytical skills, graduates will be required to present their findings in spatial visualizations that show spatial, spectral and temporal contexts. Domains such as engineering and science will no longer be the leaders in spatial skills as social sciences, health, arts and the business community gain momentum from place-based research including human interactions. A university that can offer students a pathway to advanced spatial investigation will be ahead of the game.
Resumo:
Objectives Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Methods Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. Results The slope for each regression equation was statistically significant (P < .001) with R2 values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Conclusions Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.
Resumo:
Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.
Resumo:
PURPOSE: The purpose of the present study was to analyze the neuromuscular responses during the performance of a sit to stand [STS] task in water and on dry land. SCOPE: 10 healthy subjects, five males and five females were recruited for study. Surface electromyography sEMG was used for lower limb and trunk muscles maximal voluntarty contraction [MVC] and during the STS task. RESULTS: Muscle activity was significantly higher on dry land than in water normalized signals by MVC from the quadriceps-vastus medialis [17.3%], the quadriceps - rectus femoris [5.3%], the long head of the biceps femoris [5.5%], the tibialis anterior [13.9%], the gastrocnemius medialis [3.4%], the soleus [6.2%]. However, the muscle activity was higher in water for the rectus abdominis [-26.6%] and the erector spinae [-22.6%]. CONCLUSIONS: This study for the first time describes the neuromuscular responses in healthy subjects during the performance of the STS task in water. The differences in lower limb and trunk muscle activity should be considered when using the STS movement in aquatic rehabilitation.
Resumo:
Disconnector switch operation in GIS generates VFT voltages in the system. It is important, for insulation co-ordination purposes, to obtain accurate VFT V-t data for typical gap geometries found in GIS. This paper presents experimentally obtained VFT V-t data for a 180/1 lOmm co-axial gap. The VFT has a time to first peak of 35 ns and a oscillation frequency of 13,6 MHz. Due to the location of the voltage divider in a compartment adjacent to the gap, a correction factor of 1.1 is used to relate the measured breakdown voltage to that in the gap. Positive polarity VFT V-t data is presented for 1, 2, 3 and 4 bar absolute and negative polarity VFT data for 3 and 4 bar absolute. Two methods of generating the VFT's are used. The first is to power up the test transformer at power frequency. The second is to generate a switching impulse by discharging a capacitor into the primary of the test transformer.
Resumo:
An improved understanding of the characteristics of the pre-discharge current pulses in GIS will lead to improved analyses of the results from the UHF partial discharge detection method. This paper presents the characteristics of the first pre-discharge current pulses from a point-to-plain geometry at 1 bar absolute under both polarities of a 1.1/80 us lightning impulse. The analysis has shown that the pre-discharge current wave shape, peak current magnitude and charge is effected by the instantaneous voltage at which the pre- discharge took place as well as the polarity of the active electrode. The measured results show that protrusions on the electrodes have slower wave shape parameters than those reported for free conducting particles.
Resumo:
The visual characteristics of urban environments have been changing dramatically with the growth of cities around the world. Protection and enhancement of landscape character in urban environments have been one of the challenges for policy makers in addressing sustainable urban growth. Visual openness and enclosure in urban environments are important attributes in perception of visual space which affect the human interaction with physical space and which can be often modified by new developments. Measuring visual openness in urban areas results in more accurate, reliable, and systematic approach to manage and control visual qualities in growing cities. Recent advances in techniques in geographic information systems (GIS) and survey systems make it feasible to measure and quantify this attribute with a high degree of realism and precision. Previous studies in this field do not take full advantage of these improvements. This paper proposes a method to measure the visual openness and enclosure in a changing urban landscape in Australia, on the Gold Coast, by using the improved functionality in GIS. Using this method, visual openness is calculated and described for all publicly accessible areas in the selected study area. A final map is produced which shows the areas with highest visual openness and visibility to natural landscape resources. The output of this research can be used by planners and decision-makers in managing and controlling views in complex urban landscapes. Also, depending on the availability of GIS data, this method can be applied to any region including non-urban landscapes to help planners and policy-makers manage views and visual qualities.