151 resultados para HOST PLANTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hubner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximate to 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there are anomalies, perhaps because host plant relation studies are not comparable. Studies on the attraction of heliothines to plant odors are examined in the context of our current understanding of insect olfaction, with the aim of better understanding the connection between odor perception and host choice. Finally, we discuss research into sustainable management of pest heliothines using knowledge of heliothine behavior and ecology. A coordinated international research effort is needed to advance our knowledge on host relations in widely distributed polyphagous species instead of the localized, piecemeal approaches to understanding these insects that has been the norm to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland fruit fly is Australia's most serious insect pest of horticulture. The fly lays its eggs into fruit, where they hatch into maggots which destroy the fruit. Understanding egg laying behaviour, known as oviposition, is a critical but under-researched aspect of fruit fly biology. This thesis focused on three aspects of oviposition: the role of fruit peel as a physical barrier to oviposition; the quality of fruit for maggot development; and the structure and wear of the egg laying organ – the ovipositor. Results showed that flies selected fruit based on their suitability for offspring survival, not because of the softness or hardness of fruit peel. Previously reported use of holes or wounds in fruit peel by ovipositing females was determined to be a mechanism which saved the female time, not a mechanism to reduce ovipositor wear. The results offer insights into the evolution of host use by fruit flies and their sustainable management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The painted apple moth (PAM), Teia anartoides (Walker) (Lepidoptera: Lymantriidae) made a recent incursion into New Zealand. A nucleopolyhedrovirus (NPV), Orgyia anartoides NPV (OranNPV), originally isolated from PAM in Australia, was tested for its pathogenicity to PAM and a range of non-target insect species found in New Zealand, to evaluate its suitability as a microbial control for this insect invader. Dosage-mortality tests showed that OranNPV was highly pathogenic to PAM larvae; mean LT50 values for third instars ranged from 17.9 to 8.1 days for doses from 102 to 105 polyhedral inclusion bodies/larva, respectively. The cause of death in infected insects was confirmed as OranNPV. Molecular analysis established that OranNPV can be identified by PCR and restriction digestion, and this process complemented microscopic examination of infected larvae. No lymantriid species occur in New Zealand; however, the virus had no significant effects on species from five other lepidopteran families (Noctuidae, Tortricidae, Geometridae, Nymphalidae and Plutellidae) or on adult honeybees. Thus, all indications from this initial investigation are that OranNPV would be an important tool in the control of PAM in a future incursion of this species into New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing evidence for successful silvicultural control of Hypsipyla spp. is conflicting and to a large extent anecdotal. Levels of attack have been correlated with factors such as shade, planting density, species mixtures, site characteristics, etc. These factors have often been poorly defined and are usually interdependent. The actual mechanisms that determine whether or not Hypsipyla spp. adversely affects plants we define as host-finding, host suitability, host recovery and natural enemies. These mechanisms can be influenced by the silvicultural techniques applied to a stand. Success of silvicultural techniques can usually be attributed to more than one mechanism and it is difficult to assess which is most the important for minimising the impact of Hypsipyla as these analytical data are lacking. This highlights the need for further research on silvicultural methods for controlling Hypsipyla spp. However, several silvicultural techniques that are briefly described show promise for improving the performance of future plantations. Examples of silvicultural control are reviewed with reference to these mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host–pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (± SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response. © 2008 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The benign reputation of Plasmodium vivax is at odds with the burden and severity of the disease. This reputation, combined with restricted in vitro techniques, has slowed efforts to gain an understanding of the parasite biology and interaction with its human host. Methods A simulation model of the within-host dynamics of P. vivax infection is described, incorporating distinctive characteristics of the parasite such as the preferential invasion of reticulocytes and hypnozoite production. The developed model is fitted using digitized time-series’ from historic neurosyphilis studies, and subsequently validated against summary statistics from a larger study of the same population. The Chesson relapse pattern was used to demonstrate the impact of released hypnozoites. Results The typical pattern for dynamics of the parasite population is a rapid exponential increase in the first 10 days, followed by a gradual decline. Gametocyte counts follow a similar trend, but are approximately two orders of magnitude lower. The model predicts that, on average, an infected naïve host in the absence of treatment becomes infectious 7.9 days post patency and is infectious for a mean of 34.4 days. In the absence of treatment, the effect of hypnozoite release was not apparent as newly released parasites were obscured by the existing infection. Conclusions The results from the model provides useful insights into the dynamics of P. vivax infection in human hosts, in particular the timing of host infectiousness and the role of the hypnozoite in perpetuating infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has provided further understanding of the pathogenesis of EV71, one of the major etiological agents associated with significant mortality in Hand, Foot and Mouth disease. Elucidating the host-pathogen interaction and the mechanism that the virus uses to bypass host defence systems to establish infection will aid in the development of potential antiviral therapeutics against EV71.