330 resultados para Grade Ionosférica
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
Adults diagnosed with primary brain tumours often experience physical, cognitive and neuropsychiatric impairments and decline in quality of life. Although disease and treatment-related information is commonly provided to cancer patients and carers, newly diagnosed brain tumour patients and their carers report unmet information needs. Few interventions have been designed or proven to address these information needs. Accordingly, a three-study research program, that incorporated both qualitative and quantitative research methods, was designed to: 1) identify and select an intervention to improve the provision of information, and meet the needs of patients with a brain tumour; 2) use an evidence-based approach to establish the content, language and format for the intervention; and 3) assess the acceptability of the intervention, and the feasibility of evaluation, with newly diagnosed brain tumour patients. Study 1: Structured concept mapping techniques were undertaken with 30 health professionals, who identified strategies or items for improving care, and rated each of 42 items for importance, feasibility, and the extent to which such care was provided. Participants also provided data to interpret the relationship between items, which were translated into ‘maps’ of relationships between information and other aspects of health care using multidimensional scaling and hierarchical cluster analysis. Results were discussed by participants in small groups and individual interviews to understand the ratings, and facilitators and barriers to implementation. A care coordinator was rated as the most important strategy by health professionals. Two items directly related to information provision were also seen as highly important: "information to enable the patient or carer to ask questions" and "for doctors to encourage patients to ask questions". Qualitative analyses revealed that information provision was individualised, depending on patients’ information needs and preferences, demographic variables and distress, the characteristics of health professionals who provide information, the relationship between the individual patient and health professional, and influenced by the fragmented nature of the health care system. Based on quantitative and qualitative findings, a brain tumour specific question prompt list (QPL) was chosen for development and feasibility testing. A QPL consists of a list of questions that patients and carers may want to ask their doctors. It is designed to encourage the asking of questions in the medical consultation, allowing patients to control the content, and amount of information provided by health professionals. Study 2: The initial structure and content of the brain tumour specific QPL developed was based upon thematic analyses of 1) patient materials for brain tumour patients, 2) QPLs designed for other patient populations, and 3) clinical practice guidelines for the psychosocial care of glioma patients. An iterative process of review and refinement of content was undertaken via telephone interviews with a convenience sample of 18 patients and/or carers. Successive drafts of QPLs were sent to patients and carers and changes made until no new topics or suggestions arose in four successive interviews (saturation). Once QPL content was established, readability analyses and redrafting were conducted to achieve a sixth-grade reading level. The draft QPL was also reviewed by eight health professionals, and shortened and modified based on their feedback. Professional design of the QPL was conducted and sent to patients and carers for further review. The final QPL contained questions in seven colour-coded sections: 1) diagnosis; 2) prognosis; 3) symptoms and problems; 4) treatment; 5) support; 6) after treatment finishes; and 7) the health professional team. Study 3: A feasibility study was conducted to determine the acceptability of the QPL and the appropriateness of methods, to inform a potential future randomised trial to evaluate its effectiveness. A pre-test post-test design was used with a nonrandomised control group. The control group was provided with ‘standard information’, the intervention group with ‘standard information’ plus the QPL. The primary outcome measure was acceptability of the QPL to participants. Twenty patients from four hospitals were recruited a median of 1 month (range 0-46 months) after diagnosis, and 17 completed baseline and follow-up interviews. Six participants would have preferred to receive the information booklet (standard information or QPL) at a different time, most commonly at diagnosis. Seven participants reported on the acceptability of the QPL: all said that the QPL was helpful, and that it contained questions that were useful to them; six said it made it easier to ask questions. Compared with control group participants’ ratings of ‘standard information’, QPL group participants’ views of the QPL were more positive; the QPL had been read more times, was less likely to be reported as ‘overwhelming’ to read, and was more likely to prompt participants to ask questions of their health professionals. The results from the three studies of this research program add to the body of literature on information provision for brain tumour patients. Together, these studies suggest that a QPL may be appropriate for the neuro-oncology setting and acceptable to patients. The QPL aims to assist patients to express their information needs, enabling health professionals to better provide the type and amount of information that patients need to prepare for treatment and the future. This may help health professionals meet the challenge of giving patients sufficient information, without providing ‘too much’ or ‘unnecessary’ information, or taking away hope. Future studies with rigorous designs are now needed to determine the effectiveness of the QPL.
Resumo:
The development of scientifically literate citizens remains an important priority of science education; however, growing evidence of students’ disenchantment with school science continues to challenge the realisation of this aim. This triangulation mixed methods study investigated the learning experiences of 152 9th grade students as they participated in an online science-writing project on the socioscientific issue of biosecurity. Students wrote a series of hybridized scientific narratives, or BioStories, that integrate scientific information about biosecurity with narrative storylines. The students completed an online Likert-style questionnaire, the BioQuiz, which examined selected aspects of their attitudes toward science and science learning, prior to their participation in the project, and upon completion of the writing tasks. Statistical analyses of these results and interview data obtained from participating students suggest that hybridized writing about a socioscientific issue developed more positive attitudes toward science and science learning, particularly in terms of the students’ interest and enjoyment. Implications for research and teaching are also discussed.
Resumo:
Introduction Buildings, which account for approximately half of all annual energy and greenhouse gas emissions, are an important target area for any strategy addressing climate change. Whilst new commercial buildings increasingly address sustainability considerations, incorporating green technology in the refurbishment process of older buildings is technically, financially and socially challenging. This research explores the expectations and experiences of commercial office building tenants, whose building was under-going green refurbishment. Methodology Semi-structured in-depth interviews with seven residents and neighbours of a large case-study building under-going green refurbishment in Melbourne, Australia. Built in 1979, the 7,008m² ‘B’ grade building consists of 11 upper levels of office accommodation, ground floor retail, and a basement area leased as a licensed restaurant. After refurbishment, which included the installation of chilled water pumps, solar water heating, waterless urinals, insulation, disabled toilets, and automatic dimming lights, it was expected that the environmental performance of the building would move from a non-existent zero ABGR (Australian Building Greenhouse Rating) star rating to 3.5 stars, with a 40% reduction in water consumption and 20% reduction in energy consumption. Interviews were transcribed, with responses analysed using a thematic approach, identifying categories, themes and patterns. Results Commercial property tenants are on a journey to sustainability - they are interested and willing to engage in discussions about sustainability initiatives, but the process, costs and benefits need to be clear. Critically, whilst sustainability was an essential and non-negotiable criterion in building selection for government and larger corporate tenants, sustainability was not yet a core business value for smaller organisations – whilst they could see it as an emerging issue, they wanted detailed cost-benefit analyses, pay-back calculations of proposed technologies and, ideally, wished they could trial the technology first-hand in some way. Although extremely interested in learning more, most participants reported relatively minimal knowledge of specific sustainability features, designs or products. In discussions about different sustainable technologies (e.g., waterless urinals, green-rated carpets), participants frequently commented that they knew little about the technology, had not heard of it or were not sure exactly how it worked. Whilst participants viewed sustainable commercial buildings as the future, they had varied expectations about the fate of existing older buildings – most felt that they would have to be retrofitted at some point to meet market expectations and predicted the emergence of a ‘non-sustainability discount’ for residing in a building without sustainable features. Discussion This research offers a beginning point for understanding the difficulty of integrating green technology in older commercial buildings. Tenants currently have limited understandings of technology and potential building performance outcomes, which ultimately could impede the implementation of sustainable initiatives in older buildings. Whilst the commercial property market is interested in learning about sustainability in the built environment, the findings highlight the importance of developing a strong business case, communication and transition plan for implementing sustainability retrofits in existing commercial buildings.
Resumo:
Objective: The aim of this study was to investigate the associations among measured physical fitness, perceived fitness, intention towards future physical activity and self-reported physical activity through junior high school years. Methods: Study participants included 122 Finnish students who were 13 years old during Grade 7. The sample was comprised of 80 girls and 42 boys from 3 junior high schools (Grades 7-9). During the autumn semester of Grade 7, students completed fitness tests and a questionnaire analyzing self-perception of their physical fitness. The questionnaire delivered at Grade 8 included intention towards future physical activity. At Grade 9 students’ self-reported physical activity levels. Results: Structural Equation Modeling revealed an indirect path from physical fitness to self-reported physical activity via perceived physical fitness and intention towards future physical activity. The model also demonstrated a correlation between perceived physical fitness and physical activity. Squared multiple correlations revealed that perceived physical fitness explained 33 % of the actual physical fitness. Conclusions: The results of this study highlight the role of physical and cognitive variables in the process of adoption of physical activity in adolescence.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Some of the core components of data modelling are addressed. A selection of results from the first data modelling activity implemented during the second year (2010; second grade) of a current longitudinal study are reported. Data modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Reported here are children's abilities to identify diverse and complex attributes, sort and classify data in different ways, and create and interpret models to represent their data.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the elementary school years, with opportunities for children to engage in data modeling. Data modeling involves investigations of meaningful phenomena, deciding what is worthy of attention, and then progressing to organizing, structuring, visualizing, and representing data. Reported here are some findings from a two-part activity (Baxter Brown’s Picnic and Planning a Picnic) implemented at the end of the second year of a current three-year longitudinal study (grade levels 1-3). Planning a Picnic was also implemented in a grade 7 class to provide an opportunity for the different age groups to share their products. Addressed here are the grade 2 children’s predictions for missing data in Baxter Brown’s Picnic, the questions posed and representations created by both grade levels in Planning a Picnic, and the metarepresentational competence displayed in the grade levels’ sharing of their products for Planning a Picnic.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) university coursework, reflecting long-standing gender issues that have existed in core middle-school STEM subject areas. Using data from a survey and written responses, we report on findings following the introduction of engineering education in middle school classes across three schools (grade level 7, n=122). The engineering experiences fused science, technology and mathematics concepts. The survey revealed higher percentages for girls than boys in 13 of the 24 items; however there were six items with a 20% difference in their perceptions about learning in STEM. For instance, despite girls recording that they have been provided equal or more opportunities than boys in STEM, they believed they do not do as well as boys (80% boys, 48% girls) or want to seek a career in STEM (39% boys, 17% girls). The written responses revealed gender differences across a number of themes in the students’ responses, including resources, group work, the nature and type of learning experiences, content knowledge, and teachers’ instructional style. Exposing students to STEM education facilitates an awareness of their learning and may assist girls to consider studying STEM subjects or STEM careers.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual (Katehi, Pearson, & Feder, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to significant changes in the forms of mathematical and scientific thinking that are required beyond the classroom. Modelling, in its various forms, can develop and broaden children’s mathematical and scientific thinking beyond the standard curriculum. This paper first considers future competencies in the mathematical sciences within an increasingly complex world. Next, consideration is given to interdisciplinary problem solving and models and modelling. Examples of complex, interdisciplinary modelling activities across grades are presented, with data modelling in 1st grade, model-eliciting in 4th grade, and engineering-based modelling in 7th-9th grades.
Resumo:
This paper investigates a strategy for guiding school-based active travel intervention. School-based active travel programs address the travel behaviors and perceptions of small target populations (i.e., at individual schools) so they can encourage people to walk or bike. Thus, planners need to know as much as possible about the behaviors and perceptions of their target populations. However, existing strategies for modeling travel behavior and segmenting audiences typically work with larger populations and may not capture the attitudinal diversity of smaller groups. This case study used Q technique to identify salient travel-related attitude types among parents at an elementary school in Denver, Colorado; 161 parents presented their perspectives about school travel by rank-ordering 36 statements from strongly disagree to strongly agree in a normalized distribution, single centered around no opinion. Thirty-nine respondents' cases were selected for case-wise cluster analysis in SPSS according to criteria that made them most likely to walk: proximity to school, grade, and bus service. Analysis revealed five core perspectives that were then correlated with the larger respondent pool: optimistic walkers, fair-weather walkers, drivers of necessity, determined drivers, and fence sitters. Core perspectives are presented—characterized by parents' opinions, personal characteristics, and reported travel behaviors—and recommendations are made for possible intervention approaches. The study concludes that Q technique provides a fine-grained assessment of travel behavior for small populations, which would benefit small-scale behavioral interventions
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities at a Brisbane primary school. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed realworld contexts into effective robotics lessons is recommended.
Resumo:
In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.
Resumo:
Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
Background: The EphB4 receptor tyrosine kinase has been reported as increased in tumours originating from several different tissues and its expression in a prostate cancer xenograft model has been reported. Methods: RT-PCR, western blotting and immunohistochemical techniques were used to examine EphB4 expression and protein levels in human prostate cancer cell lines LNCaP, DU145 and PC3. Immunohistochemistry was also used to examine localisation of EphB4 in tissue samples from 15 patients with prostate carcinomas. Results: All three prostate cancer cell lines expressed the EphB4 gene and protein. EphB4 immunoreactivity in vivo was significantly greater in human prostate cancers as compared with matched normal prostate epithelium and there appeared to be a trend towards increased expression with higher grade disease. Conclusions: EphB4 is expressed in prostate cancer cell lines with increased expression in human prostate cancers when compared with matched normal tissue. EphB4 may therefore be a useful anti-prostate cancer target. © 2005 Lee et al., licensee BioMed Central Ltd.