419 resultados para General Dynamics Corporation.
Resumo:
Durland and McCurdy [Durland, J.M., McCurdy, T.H., 1994. Duration-dependent transitions in a Markov model of US GNP growth. Journal of Business and Economic Statistics 12, 279–288] investigated the issue of duration dependence in US business cycle phases using a Markov regime-switching approach, introduced by Hamilton [Hamilton, J., 1989. A new approach to the analysis of time series and the business cycle. Econometrica 57, 357–384] and extended to the case of variable transition parameters by Filardo [Filardo, A.J., 1994. Business cycle phases and their transitional dynamics. Journal of Business and Economic Statistics 12, 299–308]. In Durland and McCurdy’s model duration alone was used as an explanatory variable of the transition probabilities. They found that recessions were duration dependent whilst expansions were not. In this paper, we explicitly incorporate the widely-accepted US business cycle phase change dates as determined by the NBER, and use a state-dependent multinomial Logit modelling framework. The model incorporates both duration and movements in two leading indexes – one designed to have a short lead (SLI) and the other designed to have a longer lead (LLI) – as potential explanatory variables. We find that doing so suggests that current duration is not only a significant determinant of transition out of recessions, but that there is some evidence that it is also weakly significant in the case of expansions. Furthermore, we find that SLI has more informational content for the termination of recessions whilst LLI does so for expansions.
Dynamics of attacker–defender dyads in Association Football : parameters influencing decision-making
Resumo:
Previous work on pattern-forming dynamics of team sports has investigated sub-phases of basketball and rugby union by focussing on one-versus-one (1v1) attacker-defender dyads. This body of work has identified the role of candidate control parameters, interpersonal distance and relative velocity, in predicting the outcomes of team player interactions. These two control parameters have been described as functioning in a nested relationship where relative velocity between players comes to the fore within a critical range of interpersonal distance. The critical influence of constraints on the intentionality of player behaviour has also been identified through the study of 1v1 attacker-defender dyads. This thesis draws from previous work adopting an ecological dynamics approach, which encompasses both Dynamical Systems Theory and Ecological Psychology concepts, to describe attacker-defender interactions in 1v1 dyads in association football. Twelve male youth association football players (average age 15.3 ± 0.5 yrs) performed as both attackers and defenders in 1v1 dyads in three field positions in an experimental manipulation of the proximity to goal and the role of players. Player and ball motion was tracked using TACTO 8.0 software (Fernandes & Caixinha, 2003) to produce two-dimensional (2D) trajectories of players and the ball on the ground. Significant differences were found for player-to-ball interactions depending on proximity to goal manipulations, indicating how key reference points in the environment such as the location of the goal may act as a constraint that shapes decision-making behaviour. Results also revealed that interpersonal distance and relative velocity alone were insufficient for accurately predicting the outcome of a dyad in association football. Instead, combined values of interpersonal distance, ball-to-defender distance, attacker-to-ball distance, attacker-to-ball relative velocity and relative angles were found to indicate the state of dyad outcomes.
Resumo:
A general procedure to determine the principal domain (i.e., nonredundant region of computation) of any higher-order spectrum is presented, using the bispectrum as an example. The procedure is then applied to derive the principal domain of the trispectrum of a real-valued, stationary time series. These results are easily extended to compute the principal domains of other higher-order spectra
Resumo:
A new technique is proposed for learning the dynamic characteristics of a deformable object, applied in particular to the problem of lip-tracking. Experimental results are given which demonstrate that the use of dynamic models allows the system to track more robustly under adverse conditions and to correct spurious, poorly tracked frames
Resumo:
The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
Few studies have investigated iatrogenic outcomes from the viewpoint of patient experience. To address this anomaly, the broad aim of this research is to explore the lived experience of patient harm. Patient harm is defined as major harm to the patient, either psychosocial or physical in nature, resulting from any aspect of health care. Utilising the method of Consensual Qualitative Research (CQR), in-depth interviews are conducted with twenty-four volunteer research participants who self-report having been severely harmed by an invasive medical procedure. A standardised measure of emotional distress, the Impact of Event Scale (IES), is additionally employed for purposes of triangulation. Thematic analysis of transcript data indicate numerous findings including: (i) difficulties regarding patients‘ prior understanding of risks involved with their medical procedure; (ii) the problematic response of the health system post-procedure; (iii) multiple adverse effects upon life functioning; (iv) limited recourse options for patients; and (v) the approach desired in terms of how patient harm should be systemically handled. In addition, IES results indicate a clinically significant level of distress in the sample as a whole. To discuss findings, a cross-disciplinary approach is adopted that draws upon sociology, medicine, medical anthropology, psychology, philosophy, history, ethics, law, and political theory. Furthermore, an overall explanatory framework is proposed in terms of the master themes of power and trauma. In terms of the theme of power, a postmodernist analysis explores the politics of patient harm, particularly the dynamics surrounding the politics of knowledge (e.g., notions of subjective versus objective knowledge, informed consent, and open disclosure). This analysis suggests that patient care is not the prime function of the health system, which appears more focussed upon serving the interests of those in the upper levels of its hierarchy. In terms of the master theme of trauma, current understandings of posttraumatic stress disorder (PTSD) are critiqued, and based on data from this research as well as the international literature, a new model of trauma is proposed. This model is based upon the principle of homeostasis observed in biology, whereby within every cell or organism a state of equilibrium is sought and maintained. The proposed model identifies several bio-psychosocial markers of trauma across its three main phases. These trauma markers include: (i) a profound sense of loss; (ii) a lack of perceived control; (iii) passive trauma processing responses; (iv) an identity crisis; (v) a quest to fully understand the trauma event; (vi) a need for social validation of the traumatic experience; and (vii) posttraumatic adaption with the possibility of positive change. To further explore the master themes of power and trauma, a natural group interview is carried out at a meeting of a patient support group for arachnoiditis. Observations at this meeting and members‘ stories in general support the homeostatic model of trauma, particularly the quest to find answers in the face of distressing experience, as well as the need for social recognition of that experience. In addition, the sociopolitical response to arachnoiditis highlights how public domains of knowledge are largely constructed and controlled by vested interests. Implications of the data overall are discussed in terms of a cultural revolution being needed in health care to position core values around a prime focus upon patients as human beings.
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.