150 resultados para Gays -- New Zealand -- Social conditions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental certification schemes have stimulated increasing interest in biodiversity and its management within exotic plantation forests. These schemes expect management to be scientifically-based, even though little is known about how often, or which, native species use exotic plantation forests. Greater knowledge of the ecology of native species within exotic plantation forests is required to advise management and reduce risks to native species, particularly those that are rare, such as the New Zealand long-tailed bat (Chalinolobus tuberculatus). Long-tailed bats use exotic plantation forests throughout New Zealand but need protection from the impacts of forest management, and particularly clear-fell harvest, that is achievable only through a better understanding of their biology. The consequences of the current reduced re-planting, and the conversion of plantation forests into pasture resulting in smaller forested areas, should not be ignored because they may be associated with reductions in long-tailed bat populations. We review the current knowledge of long-tailed bats' use of exotic plantation forests, and report for the first time which exotic plantations long-tailed bats are known to use. We make recommendations for the design of monitoring programmes to detect long-tailed bats within plantation forests, and for research into the effects of forest management, especially logging, and comment on the likely impacts of reductions in forested areas on long-tailed bats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i. e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/ cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds. Copyright (c) 2007 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesser short-tailed bats (Mystacina tuberculata) have recently been translocated to Kapiti Island in an attempt to form a new population of this threatened species. However, the island's vegetation is regenerating, and there was doubt that the forests provided enough large trees with cavities for bats to roost in. This study measured the availability of tree-trunk cavities of the right size for potential roost sites on Kapiti Island, and assessed if habitat restoration would be required to increase the translocation's chance of success. First, trees with cavities accessible to us were sampled in six of Kapiti Island's forest types. Size variables known to affect roost site selection by lesser short-tailed bats at the tree and cavity level were measured. Trees were classified as containing cavities that could potentially provide suitable roosts if their values for all variables measured fell within the range of roosts used by lesser short-tailed bats in natural populations. Roosts were classified as suitably sized for solitary bats or for colonies, using measurements from both types of roosts in natural populations. Second, the density of these potential roost cavities was calculated. Cavities of a size potentially suitable for colonies were found in four of the six forest types at densities ranging from 3.2 +/- 3.2 SE to 52.4 +/- 14.0 trees per ha. Density of potential solitary roosts was much higher. Not all potential cavities will be suitable because they may be damp, poorly insulated, or have an unsuitable microclimate. Nevertheless, our estimates indicated that the two most extensive forest types each contained thousands of potential cavities of a size suitable for colonies of lesser short-tailed bats. In addition, there were tens of thousands of cavities large enough to shelter solitary bats. Roost habitat restoration appears unnecessary to assist translocated Mystacina tuberculata on Kapiti Island.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homing behaviour in the New Zealand long-tailed bat (Chalinolobus tuberculatus), a temperate insectivorous species, was investigated at Grand Canyon Cave, central North Island. A pilot study of nine adult male bats was conducted to determine whether use of the cave was regular enough for a homing study. Eight bats returned to the cave over the 3 week monitoring period, six on the night of the following release. Nine additional bats carrying radio transmitters were then released at three sites (three at each site) c.5, 10 and 20km due east of the border of, and outside the population's known familiar area respectively. All but one of these nine was subsequently detected at the cave. Results suggest that adult long-tailed bats are able to return home following displacement both inside and outside their familiar area. Implications of these findings for translocations of bats and the possessions of a potential long distance navigation system by this species are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The taxonomic position of the endemic New Zealand bat genus Mystacina has vexed systematists ever since its erection in 1843. Over the years the genus has been linked with many microchiropteran families and superfamilies. Most recent classifications place it in the Vespertilionoidea, although some immunological evidence links it with the Noctilionoidea (=Phyllostomoidea). We have sequenced 402 bp of the mitochondrial cytochrome b gene for M. tuberculata (Gray in Dieffenbach, 1843), and using both our own and published DNA sequences for taxa in both superfamilies, we applied different tree reconstruction methods to find the appropriate phylogeny and different methods of estimating confidence in the parts of the tree. All methods strongly support the classification of Mystacina in the Noctilionoidea. Spectral analysis suggests that parsimony analysis may be misleading for Mystacina's precise placement within the Noctilionoidea because of its long terminal branch. Analyses not susceptible to long-branch attraction suggest that the Mystacinidae is a sister family to the Phyllostomidae. Dating the divergence times between the different taxa suggests that the extant chiropteran families radiated around and shortly after the Cretaceous–Tertiary boundary. We discuss the biogeographical implications of classifying Mystacina within the Noctilionoidea and contrast our result with those classifications placing Mystacina in the Vespertilionoidea, concluding that evidence for the latter is weak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a broad‐band recording system (150 Hz‐100 kHz) the echolocation calls of the lesser short‐tailed bat (Mystacina tuberculata) were recorded under three very different situations: free‐flying, flying within a flight cage, and on release from the hand. Calls of bats landing and feeding on a platform in Wellington Zoo were also recorded. Both the lowest frequency and frequency of peak amplitude of calls were significantly affected by the situation under which calls were recorded. Although the calls of free‐flying bats are different from those produced by bats foraging on the ground, it is unlikely that M. tuberculata uses echolocation to locate prey on the ground. No significant differences could be found between the calls emitted by male and female bats, and no consistent relationships were obvious between temporal and spectral call characteristics. There was some evidence to suggest that individual bats could be identified by their echolocation calls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the search-phase echolocation calls of lesser short-tailed bats (Mystacina tuberculata) and long-tailed bats (Chalinolobus tuberculatus). Calls were recorded from all three subspecies of short-tailed bat and seven populations of long-tailed bat, three in Northland, two in the central North Island, and two in the lower South Island. The calls were recorded in the field and digitised, then three spectral components and one temporal component of the calls were measured. Calls of the lesser short-tailed bat could be loosely classified into subspecies by means of multivariate discriminant function analysis. Similarly, long-tailed bat calls showed regional variation, and discriminant function analysis was able to fit calls to regional groups with a high rate of success. The significance of the results presented is discussed in terms of the conservation of New Zealand bats and the unique ecology of the lesser short-tailed bat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a large, isolated and relatively ancient landmass, New Zealand occupies a unique place in the biological world, with distinctive terrestrial biota and a high proportion of primitive endemic forms. Biology Aotearoa covers the origins, evolution and conservation of the New Zealand flora, fauna and fungi. Each chapter is written by specialists in the field, often working from different perspectives to build up a comprehensive picture. Topics include: the geological history of our land origins, and evolution of our plants, animals and fungi current status of rare and threatened species past, present and future management of native species the effect of human immigration on the native biota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The taxonomic position of the endemic New Zealand bat genus Mystacina has vexed systematists ever since its erection in 1843. Over the years the genus has been linked with many microchiropteran families and superfamilies. Most recent classifications place it in the Vespertilionoidea, although some immunological evidence links it with the Noctilionoidea (=Phyllostomoidea). We have sequenced 402 bp of the mitochondrial cytochrome b gene for M. tuberculata (Gray in Dieffenbach, 1843), and using both our own and published DNA sequences for taxa in both superfamilies, we applied different tree reconstruction methods to find the appropriate phylogeny and different methods of estimating confidence in the parts of the tree. All methods strongly support the classification of Mystacina in the Noctilionoidea. Spectral analysis suggests that parsimony analysis may be misleading for Mystacina's precise placement within the Noctilionoidea because of its long terminal branch. Analyses not susceptible to long-branch attraction suggest that the Mystacinidae is a sister family to the Phyllostomidae. Dating the divergence times between the different taxa suggests that the extant chiropteran families radiated around and shortly after the Cretaceous-Tertiary boundary. We discuss the biogeographical implications of classifying Mystacina within the Noctilionoidea and contrast our result with those classifications placing Mystacina in the Vespertilionoidea, concluding that evidence for the latter is weak.